利用数据丰富度增强电池模型的在线识别

Q3 Engineering
Chengxi Cai, D. Auger, S. Perinpanayagam
{"title":"利用数据丰富度增强电池模型的在线识别","authors":"Chengxi Cai, D. Auger, S. Perinpanayagam","doi":"10.1109/ESARS-ITEC57127.2023.10114851","DOIUrl":null,"url":null,"abstract":"The online model parameter identification is essential to ensure the accuracy and dependability of other battery management system (BMS) tasks in the case of battery degradation and operational environment change. Traditional recursive least squares (RLS) algorithms have always been dependent on persistently exciting data, which limits their ability to operate online when this cannot be guaranteed. This paper proposed a modified RLS method that selects the data richest point for parameter identification. In this model, Fisher information matrix and Cramer-Rao bound are utilised to evaluate the data richness. The final algorithms solve the operational limitations of RLS algorithms, enabling a reliable online model parameter identification under real-world dynamic conditions. The identified model parameters from the single cycle dynamic stress test (DST) of an NCM battery are verified by terminal voltage and state of charge (SoC) estimation with the Root Mean Square Error (RMSE) 0.0332 and 0.0131, respectively.","PeriodicalId":38493,"journal":{"name":"AUS","volume":"4 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhanced online identification of battery models exploiting data richness\",\"authors\":\"Chengxi Cai, D. Auger, S. Perinpanayagam\",\"doi\":\"10.1109/ESARS-ITEC57127.2023.10114851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The online model parameter identification is essential to ensure the accuracy and dependability of other battery management system (BMS) tasks in the case of battery degradation and operational environment change. Traditional recursive least squares (RLS) algorithms have always been dependent on persistently exciting data, which limits their ability to operate online when this cannot be guaranteed. This paper proposed a modified RLS method that selects the data richest point for parameter identification. In this model, Fisher information matrix and Cramer-Rao bound are utilised to evaluate the data richness. The final algorithms solve the operational limitations of RLS algorithms, enabling a reliable online model parameter identification under real-world dynamic conditions. The identified model parameters from the single cycle dynamic stress test (DST) of an NCM battery are verified by terminal voltage and state of charge (SoC) estimation with the Root Mean Square Error (RMSE) 0.0332 and 0.0131, respectively.\",\"PeriodicalId\":38493,\"journal\":{\"name\":\"AUS\",\"volume\":\"4 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESARS-ITEC57127.2023.10114851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESARS-ITEC57127.2023.10114851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

在电池退化和运行环境变化的情况下,在线模型参数辨识是保证电池管理系统(BMS)其他任务准确性和可靠性的关键。传统的递归最小二乘(RLS)算法一直依赖于持续令人兴奋的数据,这限制了它们在无法保证在线运行时的能力。本文提出了一种改进的RLS方法,选取数据最丰富点进行参数辨识。在该模型中,利用Fisher信息矩阵和Cramer-Rao界来评价数据的丰富度。最终的算法解决了RLS算法的操作局限性,实现了在真实动态条件下可靠的在线模型参数识别。通过对NCM电池单循环动态应力测试(DST)模型参数的验证,得到了终端电压和荷电状态(SoC)估计,RMSE分别为0.0332和0.0131。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced online identification of battery models exploiting data richness
The online model parameter identification is essential to ensure the accuracy and dependability of other battery management system (BMS) tasks in the case of battery degradation and operational environment change. Traditional recursive least squares (RLS) algorithms have always been dependent on persistently exciting data, which limits their ability to operate online when this cannot be guaranteed. This paper proposed a modified RLS method that selects the data richest point for parameter identification. In this model, Fisher information matrix and Cramer-Rao bound are utilised to evaluate the data richness. The final algorithms solve the operational limitations of RLS algorithms, enabling a reliable online model parameter identification under real-world dynamic conditions. The identified model parameters from the single cycle dynamic stress test (DST) of an NCM battery are verified by terminal voltage and state of charge (SoC) estimation with the Root Mean Square Error (RMSE) 0.0332 and 0.0131, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AUS
AUS Engineering-Architecture
CiteScore
0.40
自引率
0.00%
发文量
14
期刊介绍: Revista AUS es una publicación académica de corriente principal perteneciente a la comunidad de investigadores de la arquitectura y el urbanismo sostenibles, en el ámbito de las culturas locales y globales. La revista es semestral, cuenta con comité editorial y sus artículos son revisados por pares en el sistema de doble ciego. Periodicidad semestral.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信