{"title":"电子圆二色性的特征及其用于确定绝对形状的提示","authors":"Jesús T. Vázquez","doi":"10.1016/j.tetasy.2017.09.015","DOIUrl":null,"url":null,"abstract":"<div><p>This review focuses on the general features of electronic circular dichroism<span><span> (ECD) as applied in determining the absolute configuration of organic compounds. The high sensitivity and straightforward spectral interpretation of the </span>exciton<span> chirality method makes this approach very useful, and complementary to X-ray crystallography. A brief tutorial is provided on ECD, with precautions and tips for using it, especially the exciton chirality method. The spectroscopic ECD of several examples are analyzed.</span></span></p></div>","PeriodicalId":22237,"journal":{"name":"Tetrahedron, asymmetry","volume":"28 10","pages":"Pages 1199-1211"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.tetasy.2017.09.015","citationCount":"19","resultStr":"{\"title\":\"Features of electronic circular dichroism and tips for its use in determining absolute configuration\",\"authors\":\"Jesús T. Vázquez\",\"doi\":\"10.1016/j.tetasy.2017.09.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review focuses on the general features of electronic circular dichroism<span><span> (ECD) as applied in determining the absolute configuration of organic compounds. The high sensitivity and straightforward spectral interpretation of the </span>exciton<span> chirality method makes this approach very useful, and complementary to X-ray crystallography. A brief tutorial is provided on ECD, with precautions and tips for using it, especially the exciton chirality method. The spectroscopic ECD of several examples are analyzed.</span></span></p></div>\",\"PeriodicalId\":22237,\"journal\":{\"name\":\"Tetrahedron, asymmetry\",\"volume\":\"28 10\",\"pages\":\"Pages 1199-1211\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.tetasy.2017.09.015\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tetrahedron, asymmetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957416617304470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tetrahedron, asymmetry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957416617304470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
Features of electronic circular dichroism and tips for its use in determining absolute configuration
This review focuses on the general features of electronic circular dichroism (ECD) as applied in determining the absolute configuration of organic compounds. The high sensitivity and straightforward spectral interpretation of the exciton chirality method makes this approach very useful, and complementary to X-ray crystallography. A brief tutorial is provided on ECD, with precautions and tips for using it, especially the exciton chirality method. The spectroscopic ECD of several examples are analyzed.
期刊介绍:
Cessation. Tetrahedron: Asymmetry presents experimental or theoretical research results of outstanding significance and timeliness on asymmetry in organic, inorganic, organometallic and physical chemistry, as well as its application to related disciplines, especially bio-organic chemistry.
The journal publishes critical reviews, original research articles and preliminary communications dealing with all aspects of the chemical, physical and theoretical properties of non-racemic organic and inorganic materials and processes. Topics relevant to the journal include: the physico-chemical and biological properties of enantiomers; strategies and methodologies of asymmetric synthesis; resolution; chirality recognition and enhancement; analytical techniques for assessing enantiomeric purity and the unambiguous determination of absolute configuration; and molecular graphics and modelling methods for interpreting and predicting asymmetric phenomena. Papers describing the synthesis or properties of non-racemic molecules will be required to include a separate statement in the form of a Stereochemistry Abstract, for publication in the same issue, of the criteria used for the assignment of configuration and enantiomeric purity.