{"title":"受腐蚀钢结构疲劳寿命预测及维修管理","authors":"Le Li, M. Mahmoodian","doi":"10.1080/13287982.2021.1999041","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper proposes a new method to predict the failure of steel structures subjected to fatigue and corrosion. A model is developed to determine changes in S-N curve of beams (i.e., intact plates) and connections subjected to simultaneous corrosion and fatigue environment. The fatigue damages of beams and connections are then modelled as stochastic processes. The first-passage probability method is used to determine the time-dependent probability of fatigue failure of plates and connections, and then system reliability analysis is carried out for a steel structure as a working example. It has been found that ignoring corrosion effect on S-N curves for beams and connections can lead to underestimation of fatigue life of corroded steel structures. It has also been found that corroded connections can be more vulnerable to fatigue failure than beams. Apart from that, a risk cost optimisation programme is applied to the working example to find the maintenance strategies that ensure the safe operation of steel structures and intend to minimise the total risk. The methodology proposed in this paper can help structural engineers and asset managers on repair and maintenance of steel structures subjected to simultaneous corrosion and fatigue.","PeriodicalId":45617,"journal":{"name":"Australian Journal of Structural Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"FATIGUE LIFE PREDICTION AND MAINTAINANCE MANAGEMENT OF STEEL STRUCTURES SUBJECTED TO CORROSION\",\"authors\":\"Le Li, M. Mahmoodian\",\"doi\":\"10.1080/13287982.2021.1999041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This paper proposes a new method to predict the failure of steel structures subjected to fatigue and corrosion. A model is developed to determine changes in S-N curve of beams (i.e., intact plates) and connections subjected to simultaneous corrosion and fatigue environment. The fatigue damages of beams and connections are then modelled as stochastic processes. The first-passage probability method is used to determine the time-dependent probability of fatigue failure of plates and connections, and then system reliability analysis is carried out for a steel structure as a working example. It has been found that ignoring corrosion effect on S-N curves for beams and connections can lead to underestimation of fatigue life of corroded steel structures. It has also been found that corroded connections can be more vulnerable to fatigue failure than beams. Apart from that, a risk cost optimisation programme is applied to the working example to find the maintenance strategies that ensure the safe operation of steel structures and intend to minimise the total risk. The methodology proposed in this paper can help structural engineers and asset managers on repair and maintenance of steel structures subjected to simultaneous corrosion and fatigue.\",\"PeriodicalId\":45617,\"journal\":{\"name\":\"Australian Journal of Structural Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13287982.2021.1999041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13287982.2021.1999041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
FATIGUE LIFE PREDICTION AND MAINTAINANCE MANAGEMENT OF STEEL STRUCTURES SUBJECTED TO CORROSION
ABSTRACT This paper proposes a new method to predict the failure of steel structures subjected to fatigue and corrosion. A model is developed to determine changes in S-N curve of beams (i.e., intact plates) and connections subjected to simultaneous corrosion and fatigue environment. The fatigue damages of beams and connections are then modelled as stochastic processes. The first-passage probability method is used to determine the time-dependent probability of fatigue failure of plates and connections, and then system reliability analysis is carried out for a steel structure as a working example. It has been found that ignoring corrosion effect on S-N curves for beams and connections can lead to underestimation of fatigue life of corroded steel structures. It has also been found that corroded connections can be more vulnerable to fatigue failure than beams. Apart from that, a risk cost optimisation programme is applied to the working example to find the maintenance strategies that ensure the safe operation of steel structures and intend to minimise the total risk. The methodology proposed in this paper can help structural engineers and asset managers on repair and maintenance of steel structures subjected to simultaneous corrosion and fatigue.
期刊介绍:
The Australian Journal of Structural Engineering (AJSE) is published under the auspices of the Structural College Board of Engineers Australia. It fulfils part of the Board''s mission for Continuing Professional Development. The journal also offers a means for exchange and interaction of scientific and professional issues and technical developments. The journal is open to members and non-members of Engineers Australia. Original papers on research and development (Technical Papers) and professional matters and achievements (Professional Papers) in all areas relevant to the science, art and practice of structural engineering are considered for possible publication. All papers and technical notes are peer-reviewed. The fundamental criterion for acceptance for publication is the intellectual and professional value of the contribution. Occasionally, papers previously published in essentially the same form elsewhere may be considered for publication. In this case acknowledgement to prior publication must be included in a footnote on page one of the manuscript. These papers are peer-reviewed as new submissions. The length of acceptable contributions typically should not exceed 4,000 to 5,000 word equivalents. Longer manuscripts may be considered at the discretion of the Editor. Technical Notes typically should not exceed about 1,000 word equivalents. Discussions on a Paper or Note published in the AJSE are welcomed. Discussions must address significant matters related to the content of a Paper or Technical Note and may include supplementary and critical comments and questions regarding content.