重新计时的有效实现

Jia Wang, H. Zhou
{"title":"重新计时的有效实现","authors":"Jia Wang, H. Zhou","doi":"10.1109/ICCAD.1994.629770","DOIUrl":null,"url":null,"abstract":"Retiming is a technique for optimizing sequential circuits. It repositions the registers in a circuit leaving the combinational cells untouched. The objective of retiming is to find a circuit with the minimum number of registers for a specified clock period. More than ten years have elapsed since Leiserson and Saxe first presented a theoretical formulation to solve this problem for single-clock edge-triggered sequential circuits. Their proposed algorithms have polynomial complexity; however naive implementations of these algorithms exhibit O ( n 3 ) time complexitiy and O ( n 2 ) space complexity when applied to digital circuits with n combinational cells. This renders retiming ineffective for circuits with more than 500 combinational cells. This paper addresses the implementation issues required to exploit the sparsity of circuit graphs to allow min-period retiming and constrained min-area retiming to be applied to circuits with as many as 10,000 combinational cells. We believe this is the first paper to address these issues and the first to report retiming results for large circuits.","PeriodicalId":90518,"journal":{"name":"ICCAD. IEEE/ACM International Conference on Computer-Aided Design","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Efficient Implementation Of Retiming\",\"authors\":\"Jia Wang, H. Zhou\",\"doi\":\"10.1109/ICCAD.1994.629770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Retiming is a technique for optimizing sequential circuits. It repositions the registers in a circuit leaving the combinational cells untouched. The objective of retiming is to find a circuit with the minimum number of registers for a specified clock period. More than ten years have elapsed since Leiserson and Saxe first presented a theoretical formulation to solve this problem for single-clock edge-triggered sequential circuits. Their proposed algorithms have polynomial complexity; however naive implementations of these algorithms exhibit O ( n 3 ) time complexitiy and O ( n 2 ) space complexity when applied to digital circuits with n combinational cells. This renders retiming ineffective for circuits with more than 500 combinational cells. This paper addresses the implementation issues required to exploit the sparsity of circuit graphs to allow min-period retiming and constrained min-area retiming to be applied to circuits with as many as 10,000 combinational cells. We believe this is the first paper to address these issues and the first to report retiming results for large circuits.\",\"PeriodicalId\":90518,\"journal\":{\"name\":\"ICCAD. IEEE/ACM International Conference on Computer-Aided Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICCAD. IEEE/ACM International Conference on Computer-Aided Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.1994.629770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICCAD. IEEE/ACM International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1994.629770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

重定时是一种优化顺序电路的技术。它在电路中重新定位寄存器,使组合单元保持不变。重定时的目的是在指定的时钟周期内找到具有最小寄存器数的电路。自Leiserson和Saxe首次提出解决单时钟边缘触发顺序电路这个问题的理论公式以来,已经过去了十多年。他们提出的算法具有多项式复杂度;然而,当应用于具有n个组合单元的数字电路时,这些算法的幼稚实现表现出O (n3)的时间复杂度和O (n2)的空间复杂度。这使得重定时对于超过500个组合细胞的电路无效。本文解决了利用电线图的稀疏性所需的实现问题,以允许将最小周期重定时和约束最小面积重定时应用于具有多达10,000个组合单元的电路。我们相信这是第一篇解决这些问题的论文,也是第一篇报道大型电路重定时结果的论文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Implementation Of Retiming
Retiming is a technique for optimizing sequential circuits. It repositions the registers in a circuit leaving the combinational cells untouched. The objective of retiming is to find a circuit with the minimum number of registers for a specified clock period. More than ten years have elapsed since Leiserson and Saxe first presented a theoretical formulation to solve this problem for single-clock edge-triggered sequential circuits. Their proposed algorithms have polynomial complexity; however naive implementations of these algorithms exhibit O ( n 3 ) time complexitiy and O ( n 2 ) space complexity when applied to digital circuits with n combinational cells. This renders retiming ineffective for circuits with more than 500 combinational cells. This paper addresses the implementation issues required to exploit the sparsity of circuit graphs to allow min-period retiming and constrained min-area retiming to be applied to circuits with as many as 10,000 combinational cells. We believe this is the first paper to address these issues and the first to report retiming results for large circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信