{"title":"若干大次数域的$2$-类群","authors":"M. M. Chems-Eddin, A. Azizi, A. Zekhnini","doi":"10.5817/AM2021-1-13","DOIUrl":null,"url":null,"abstract":"Let $d$ be an odd square-free integer, $m\\geq 3$, $k$:$=\\mathbb{Q}(\\sqrt{d}, \\sqrt{-1})$, $\\mathbb{Q}(\\sqrt{-2}, \\sqrt{d})$ or $\\mathbb{Q}(\\sqrt{-2}, \\sqrt{-d})$, and $L_{m,d}:=\\mathbb{Q}(\\zeta_{2^m},\\sqrt{d})$. In this paper, we shall determine all the fields $L_{m, d}:=\\mathbb{Q}(\\zeta_{2^m},\\sqrt{d})$, with $m\\geq 3$ is an integer, such that the class number of $L_{m, d}$ is odd. Furthermore, using the cyclotomic $\\mathbb{Z}_2$-extensions of $k$, we compute the rank of the $2$-class group of $L_{m, d}$ whenever the divisors of $d$ are congruent $3$ or $5\\pmod 8$.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"23 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On the $2$-class group of some number fields with large degree\",\"authors\":\"M. M. Chems-Eddin, A. Azizi, A. Zekhnini\",\"doi\":\"10.5817/AM2021-1-13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $d$ be an odd square-free integer, $m\\\\geq 3$, $k$:$=\\\\mathbb{Q}(\\\\sqrt{d}, \\\\sqrt{-1})$, $\\\\mathbb{Q}(\\\\sqrt{-2}, \\\\sqrt{d})$ or $\\\\mathbb{Q}(\\\\sqrt{-2}, \\\\sqrt{-d})$, and $L_{m,d}:=\\\\mathbb{Q}(\\\\zeta_{2^m},\\\\sqrt{d})$. In this paper, we shall determine all the fields $L_{m, d}:=\\\\mathbb{Q}(\\\\zeta_{2^m},\\\\sqrt{d})$, with $m\\\\geq 3$ is an integer, such that the class number of $L_{m, d}$ is odd. Furthermore, using the cyclotomic $\\\\mathbb{Z}_2$-extensions of $k$, we compute the rank of the $2$-class group of $L_{m, d}$ whenever the divisors of $d$ are congruent $3$ or $5\\\\pmod 8$.\",\"PeriodicalId\":45191,\"journal\":{\"name\":\"Archivum Mathematicum\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivum Mathematicum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5817/AM2021-1-13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/AM2021-1-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the $2$-class group of some number fields with large degree
Let $d$ be an odd square-free integer, $m\geq 3$, $k$:$=\mathbb{Q}(\sqrt{d}, \sqrt{-1})$, $\mathbb{Q}(\sqrt{-2}, \sqrt{d})$ or $\mathbb{Q}(\sqrt{-2}, \sqrt{-d})$, and $L_{m,d}:=\mathbb{Q}(\zeta_{2^m},\sqrt{d})$. In this paper, we shall determine all the fields $L_{m, d}:=\mathbb{Q}(\zeta_{2^m},\sqrt{d})$, with $m\geq 3$ is an integer, such that the class number of $L_{m, d}$ is odd. Furthermore, using the cyclotomic $\mathbb{Z}_2$-extensions of $k$, we compute the rank of the $2$-class group of $L_{m, d}$ whenever the divisors of $d$ are congruent $3$ or $5\pmod 8$.
期刊介绍:
Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.