单整流线性类神经元单元的最小混沌网络:三个原型

Y. Horikawa
{"title":"单整流线性类神经元单元的最小混沌网络:三个原型","authors":"Y. Horikawa","doi":"10.1142/S0218127423300173","DOIUrl":null,"url":null,"abstract":"Chaotic oscillations induced by single rectification in networks of linear neuron-like elements are examined on three prototype models: one nonautonomous system and two autonomous systems. The first is a system of coupled neurons with periodic input; the second is a system of three coupled neurons with six couplings; the third is a ring of four unidirectionally coupled neurons with one reverse coupling. In each system, the output function of one neuron is ramp and that of the others is linear. Each system is piecewise linear and the phase space is separated into two domains by a single border. Steady states, periodic solutions and homoclinic orbits are derived rigorously and their stability is evaluated with the eigenvalues of the Jacobian matrices. The bifurcation analysis of the three systems shows that chaotic attractors could be generated through cascades of period-doubling bifurcations of periodic solutions.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":"188 1","pages":"2330017:1-2330017:22"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal Chaotic Networks of Linear Neuron-Like Elements with Single Rectification: Three Prototypes\",\"authors\":\"Y. Horikawa\",\"doi\":\"10.1142/S0218127423300173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chaotic oscillations induced by single rectification in networks of linear neuron-like elements are examined on three prototype models: one nonautonomous system and two autonomous systems. The first is a system of coupled neurons with periodic input; the second is a system of three coupled neurons with six couplings; the third is a ring of four unidirectionally coupled neurons with one reverse coupling. In each system, the output function of one neuron is ramp and that of the others is linear. Each system is piecewise linear and the phase space is separated into two domains by a single border. Steady states, periodic solutions and homoclinic orbits are derived rigorously and their stability is evaluated with the eigenvalues of the Jacobian matrices. The bifurcation analysis of the three systems shows that chaotic attractors could be generated through cascades of period-doubling bifurcations of periodic solutions.\",\"PeriodicalId\":13688,\"journal\":{\"name\":\"Int. J. Bifurc. Chaos\",\"volume\":\"188 1\",\"pages\":\"2330017:1-2330017:22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bifurc. Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218127423300173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218127423300173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在一个非自治系统和两个自治系统的三种原型模型上研究了线性类神经元单元网络中单次整流引起的混沌振荡。第一种是具有周期性输入的耦合神经元系统;第二种是一个由三个耦合神经元组成的系统,有六个耦合;第三种是一个由四个单向耦合神经元和一个反向耦合神经元组成的环。在每个系统中,一个神经元的输出函数为斜坡,其他神经元的输出函数为线性。每个系统都是分段线性的,相空间被一个边界分隔成两个域。严格推导了稳态、周期解和同斜轨道,并用雅可比矩阵的特征值评价了它们的稳定性。三种系统的分岔分析表明,混沌吸引子可以通过周期解的倍周期分岔级联产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal Chaotic Networks of Linear Neuron-Like Elements with Single Rectification: Three Prototypes
Chaotic oscillations induced by single rectification in networks of linear neuron-like elements are examined on three prototype models: one nonautonomous system and two autonomous systems. The first is a system of coupled neurons with periodic input; the second is a system of three coupled neurons with six couplings; the third is a ring of four unidirectionally coupled neurons with one reverse coupling. In each system, the output function of one neuron is ramp and that of the others is linear. Each system is piecewise linear and the phase space is separated into two domains by a single border. Steady states, periodic solutions and homoclinic orbits are derived rigorously and their stability is evaluated with the eigenvalues of the Jacobian matrices. The bifurcation analysis of the three systems shows that chaotic attractors could be generated through cascades of period-doubling bifurcations of periodic solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信