{"title":"自动驾驶故障动力系统的尺寸","authors":"A. Kilic","doi":"10.18245/ijaet.669170","DOIUrl":null,"url":null,"abstract":"The automotive industry is changing due to automation, e-mobility, connectivity and shared mobility. For realization of automated driving systems, a high degree of safety and reliability is required. In today's vehicles a driver serves as a fallback for control, mechanical and energetic levels. Automated driving is a new market and requires fail-operational subsystems and components enabling the highest required safety level. One possibility to fulfill these requirements is designing a redundant system. Since such a design is not always possible and optimal in a vehicle due to the cost, size and weight factors, new system architectures are needed. A fail-operational electrical powertrain (power net, electric machine with inverter and battery) is a main prerequisite for introducing automated driving. This paper presents the concepts for developing fail-operational powertrain solution for automated driving.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"6 1","pages":"52-57"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dimensioning of fail-operational powertrain for automated driving\",\"authors\":\"A. Kilic\",\"doi\":\"10.18245/ijaet.669170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automotive industry is changing due to automation, e-mobility, connectivity and shared mobility. For realization of automated driving systems, a high degree of safety and reliability is required. In today's vehicles a driver serves as a fallback for control, mechanical and energetic levels. Automated driving is a new market and requires fail-operational subsystems and components enabling the highest required safety level. One possibility to fulfill these requirements is designing a redundant system. Since such a design is not always possible and optimal in a vehicle due to the cost, size and weight factors, new system architectures are needed. A fail-operational electrical powertrain (power net, electric machine with inverter and battery) is a main prerequisite for introducing automated driving. This paper presents the concepts for developing fail-operational powertrain solution for automated driving.\",\"PeriodicalId\":13841,\"journal\":{\"name\":\"International Journal of Automotive Engineering and Technologies\",\"volume\":\"6 1\",\"pages\":\"52-57\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive Engineering and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18245/ijaet.669170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Engineering and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18245/ijaet.669170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dimensioning of fail-operational powertrain for automated driving
The automotive industry is changing due to automation, e-mobility, connectivity and shared mobility. For realization of automated driving systems, a high degree of safety and reliability is required. In today's vehicles a driver serves as a fallback for control, mechanical and energetic levels. Automated driving is a new market and requires fail-operational subsystems and components enabling the highest required safety level. One possibility to fulfill these requirements is designing a redundant system. Since such a design is not always possible and optimal in a vehicle due to the cost, size and weight factors, new system architectures are needed. A fail-operational electrical powertrain (power net, electric machine with inverter and battery) is a main prerequisite for introducing automated driving. This paper presents the concepts for developing fail-operational powertrain solution for automated driving.