有限表示群中度量小消去的密度

IF 0.1 Q4 MATHEMATICS
A. Bishop, Michal Ferov
{"title":"有限表示群中度量小消去的密度","authors":"A. Bishop, Michal Ferov","doi":"10.46298/jgcc.2020.12.2.6200","DOIUrl":null,"url":null,"abstract":"Small cancellation groups form an interesting class with many desirable\nproperties. It is a well-known fact that small cancellation groups are generic;\nhowever, all previously known results of their genericity are asymptotic and\nprovide no information about \"small\" group presentations. In this note, we give\nclosed-form formulas for both lower and upper bounds on the density of small\ncancellation presentations, and compare our results with experimental data.\nComment: 18 pages, 12 figures","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"1 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Density of Metric Small Cancellation in Finitely Presented Groups\",\"authors\":\"A. Bishop, Michal Ferov\",\"doi\":\"10.46298/jgcc.2020.12.2.6200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Small cancellation groups form an interesting class with many desirable\\nproperties. It is a well-known fact that small cancellation groups are generic;\\nhowever, all previously known results of their genericity are asymptotic and\\nprovide no information about \\\"small\\\" group presentations. In this note, we give\\nclosed-form formulas for both lower and upper bounds on the density of small\\ncancellation presentations, and compare our results with experimental data.\\nComment: 18 pages, 12 figures\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/jgcc.2020.12.2.6200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jgcc.2020.12.2.6200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

小的抵消群形成了一个有趣的类,具有许多理想的属性。一个众所周知的事实是,小的消去群是泛型的;然而,所有先前已知的关于它们泛型的结果都是渐近的,并且没有提供关于“小”群表示的信息。在本文中,我们给出了小消去表示密度的下界和上界的封闭形式公式,并将我们的结果与实验数据进行了比较。评论:18页,12个数字
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Density of Metric Small Cancellation in Finitely Presented Groups
Small cancellation groups form an interesting class with many desirable properties. It is a well-known fact that small cancellation groups are generic; however, all previously known results of their genericity are asymptotic and provide no information about "small" group presentations. In this note, we give closed-form formulas for both lower and upper bounds on the density of small cancellation presentations, and compare our results with experimental data. Comment: 18 pages, 12 figures
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信