使用机器学习在历史伊斯坦布尔佩维蒂奇地图和卫星视图之间进行交互风格和信息传递

IF 0.3 0 ARCHITECTURE
Sema Alaçam, I. Karadag, Orkan Zeynel Güzelci
{"title":"使用机器学习在历史伊斯坦布尔佩维蒂奇地图和卫星视图之间进行交互风格和信息传递","authors":"Sema Alaçam, I. Karadag, Orkan Zeynel Güzelci","doi":"10.18537/est.v011.n022.a06","DOIUrl":null,"url":null,"abstract":"Historical maps contain significant data on the cultural, social, and urban character of cities. However, most historical maps utilize specific notation methods that differ from those commonly used today and converting these maps to more recent formats can be highly labor-intensive. This study is intended to demonstrate how a machine learning (ML) technique can be used to transform old maps of Istanbul into spatial data that simulates modern satellite views (SVs) through a reciprocal map conversion framework. With this aim, the Istanbul Pervititch Maps (IPMs) made by Jacques Pervititch in 1922-1945 and current SVs were used to test and evaluate the proposed framework. The study consists of a style and information transfer in two stages: (i) from IPMs to SVs, and (ii) from SVs to IPMs using CycleGAN (a type of generative adversarial network). The initial results indicate that the proposed framework can transfer attributes such as green areas, construction techniques/materials, and labels/tags.","PeriodicalId":40933,"journal":{"name":"Estoa-Revista de la Facultad de Arquitectura y Urbanismo de la Universidad de Cuenca","volume":"10 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reciprocal style and information transfer between historical Istanbul Pervititch Maps and satellite views using machine learning\",\"authors\":\"Sema Alaçam, I. Karadag, Orkan Zeynel Güzelci\",\"doi\":\"10.18537/est.v011.n022.a06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Historical maps contain significant data on the cultural, social, and urban character of cities. However, most historical maps utilize specific notation methods that differ from those commonly used today and converting these maps to more recent formats can be highly labor-intensive. This study is intended to demonstrate how a machine learning (ML) technique can be used to transform old maps of Istanbul into spatial data that simulates modern satellite views (SVs) through a reciprocal map conversion framework. With this aim, the Istanbul Pervititch Maps (IPMs) made by Jacques Pervititch in 1922-1945 and current SVs were used to test and evaluate the proposed framework. The study consists of a style and information transfer in two stages: (i) from IPMs to SVs, and (ii) from SVs to IPMs using CycleGAN (a type of generative adversarial network). The initial results indicate that the proposed framework can transfer attributes such as green areas, construction techniques/materials, and labels/tags.\",\"PeriodicalId\":40933,\"journal\":{\"name\":\"Estoa-Revista de la Facultad de Arquitectura y Urbanismo de la Universidad de Cuenca\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Estoa-Revista de la Facultad de Arquitectura y Urbanismo de la Universidad de Cuenca\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18537/est.v011.n022.a06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estoa-Revista de la Facultad de Arquitectura y Urbanismo de la Universidad de Cuenca","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18537/est.v011.n022.a06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
引用次数: 2

摘要

历史地图包含了关于城市的文化、社会和城市特征的重要数据。然而,大多数历史地图使用的特定表示法不同于今天常用的表示法,并且将这些地图转换为更新的格式可能是高度劳动密集型的。本研究旨在展示如何使用机器学习(ML)技术将伊斯坦布尔的旧地图转换为空间数据,通过互反地图转换框架模拟现代卫星视图(sv)。为此,Jacques Pervititch在1922-1945年制作的伊斯坦布尔Pervititch地图(IPMs)和当前的sv被用来测试和评估提出的框架。该研究包括两个阶段的风格和信息传递:(i)从ipm到SVs,以及(ii)使用CycleGAN(一种生成对抗网络)从SVs到ipm。初步结果表明,提议的框架可以转移诸如绿地、建筑技术/材料和标签/标签等属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reciprocal style and information transfer between historical Istanbul Pervititch Maps and satellite views using machine learning
Historical maps contain significant data on the cultural, social, and urban character of cities. However, most historical maps utilize specific notation methods that differ from those commonly used today and converting these maps to more recent formats can be highly labor-intensive. This study is intended to demonstrate how a machine learning (ML) technique can be used to transform old maps of Istanbul into spatial data that simulates modern satellite views (SVs) through a reciprocal map conversion framework. With this aim, the Istanbul Pervititch Maps (IPMs) made by Jacques Pervititch in 1922-1945 and current SVs were used to test and evaluate the proposed framework. The study consists of a style and information transfer in two stages: (i) from IPMs to SVs, and (ii) from SVs to IPMs using CycleGAN (a type of generative adversarial network). The initial results indicate that the proposed framework can transfer attributes such as green areas, construction techniques/materials, and labels/tags.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.10
自引率
0.00%
发文量
30
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信