{"title":"具有正特征的分裂半贝尔变体正则自映射的Zariski稠密轨道","authors":"D. Ghioca, S. Saleh","doi":"10.1017/S0305004123000270","DOIUrl":null,"url":null,"abstract":"Abstract We prove the Zariski dense orbit conjecture in positive characteristic for regular self-maps of split semiabelian varieties.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"6 1","pages":"479 - 519"},"PeriodicalIF":0.6000,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Zariski dense orbits for regular self-maps of split semiabelian varieties in positive characteristic\",\"authors\":\"D. Ghioca, S. Saleh\",\"doi\":\"10.1017/S0305004123000270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove the Zariski dense orbit conjecture in positive characteristic for regular self-maps of split semiabelian varieties.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"6 1\",\"pages\":\"479 - 519\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0305004123000270\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004123000270","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.