n人博弈中一个纯平衡点的概率

Melvin Dresher
{"title":"n人博弈中一个纯平衡点的概率","authors":"Melvin Dresher","doi":"10.1016/S0021-9800(70)80015-1","DOIUrl":null,"url":null,"abstract":"<div><p>A “random” <em>n</em>-person non-cooperative game—the game that prohibits communication and therefore coalitions among the <em>n</em> players—is shown to have with high probability a pure strategy solution. Such a solution is by definition an equilibrium point or a set of strategies, one for each player, such that if <em>n</em>−1 players use their equilibrium strategies then the <em>n</em>-th player has no reason to deviate from his equilibrium strategy. It is shown that the probability of a solution in pure strategies for large random <em>n</em>-person games converges to (1−1/<em>e</em>) for all <em>n</em>≥2.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"8 1","pages":"Pages 134-145"},"PeriodicalIF":0.0000,"publicationDate":"1970-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80015-1","citationCount":"59","resultStr":"{\"title\":\"Probability of a pure equilibrium point in n-person games\",\"authors\":\"Melvin Dresher\",\"doi\":\"10.1016/S0021-9800(70)80015-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A “random” <em>n</em>-person non-cooperative game—the game that prohibits communication and therefore coalitions among the <em>n</em> players—is shown to have with high probability a pure strategy solution. Such a solution is by definition an equilibrium point or a set of strategies, one for each player, such that if <em>n</em>−1 players use their equilibrium strategies then the <em>n</em>-th player has no reason to deviate from his equilibrium strategy. It is shown that the probability of a solution in pure strategies for large random <em>n</em>-person games converges to (1−1/<em>e</em>) for all <em>n</em>≥2.</p></div>\",\"PeriodicalId\":100765,\"journal\":{\"name\":\"Journal of Combinatorial Theory\",\"volume\":\"8 1\",\"pages\":\"Pages 134-145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1970-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80015-1\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021980070800151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

一个“随机的”n人非合作博弈(游戏邦注:这种博弈禁止交流,因此禁止n个玩家之间的联合)很有可能是一个纯策略解决方案。根据定义,这样的解是一个平衡点或一组策略,每个参与者一个,这样如果n- 1个参与者使用他们的均衡策略,那么第n个参与者就没有理由偏离他的均衡策略。结果表明,对于所有n≥2的随机n人博弈,纯策略解的概率收敛于(1−1/e)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probability of a pure equilibrium point in n-person games

A “random” n-person non-cooperative game—the game that prohibits communication and therefore coalitions among the n players—is shown to have with high probability a pure strategy solution. Such a solution is by definition an equilibrium point or a set of strategies, one for each player, such that if n−1 players use their equilibrium strategies then the n-th player has no reason to deviate from his equilibrium strategy. It is shown that the probability of a solution in pure strategies for large random n-person games converges to (1−1/e) for all n≥2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信