{"title":"一种相位可调的基于液晶的超表面","authors":"A. Couch, A. Grbic","doi":"10.1109/METAMATERIALS.2016.7746448","DOIUrl":null,"url":null,"abstract":"The tunable dielectric anisotropy of liquid crystals is used to design a metasurface that acts as a phase-tunable reflector. An equivalent circuit is developed for the metasurface which closely models its simulation performance. The design and fabrication procedure for the metasurface is discussed. An experimental prototype is shown to exhibit 186° of phase swing.","PeriodicalId":6587,"journal":{"name":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","volume":"80 1","pages":"94-96"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A phase-tunable, liquid crystal-based metasurface\",\"authors\":\"A. Couch, A. Grbic\",\"doi\":\"10.1109/METAMATERIALS.2016.7746448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tunable dielectric anisotropy of liquid crystals is used to design a metasurface that acts as a phase-tunable reflector. An equivalent circuit is developed for the metasurface which closely models its simulation performance. The design and fabrication procedure for the metasurface is discussed. An experimental prototype is shown to exhibit 186° of phase swing.\",\"PeriodicalId\":6587,\"journal\":{\"name\":\"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)\",\"volume\":\"80 1\",\"pages\":\"94-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/METAMATERIALS.2016.7746448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/METAMATERIALS.2016.7746448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The tunable dielectric anisotropy of liquid crystals is used to design a metasurface that acts as a phase-tunable reflector. An equivalent circuit is developed for the metasurface which closely models its simulation performance. The design and fabrication procedure for the metasurface is discussed. An experimental prototype is shown to exhibit 186° of phase swing.