对话管理中认知模型的整合:虚拟谈判教练应用程序的设计

Q1 Arts and Humanities
A. Malchanau, V. Petukhova, H. Bunt
{"title":"对话管理中认知模型的整合:虚拟谈判教练应用程序的设计","authors":"A. Malchanau, V. Petukhova, H. Bunt","doi":"10.5087/DAD.2018.202","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to flexible and adaptive dialogue management driven by cognitive modelling of human dialogue behaviour. Artificial intelligent agents, based on the ACT-R cognitive architecture, together with human actors are participating in a (meta)cognitive skills training within a negotiation scenario. The agent  employs instance-based learning to decide about its own actions and to reflect on the behaviour of the opponent. We show that task-related actions can be handled by a cognitive agent who is a plausible dialogue partner.  Separating task-related and dialogue control actions enables the application of sophisticated models along with a flexible architecture  in which  various alternative modelling methods can be combined. We evaluated the proposed approach with users assessing  the relative contribution of various factors to the overall usability of a dialogue system. Subjective perception of effectiveness, efficiency and satisfaction were correlated with various objective performance metrics, e.g. number of (in)appropriate system responses, recovery strategies, and interaction pace. It was observed that the dialogue system usability is determined most by the quality of agreements reached in terms of estimated Pareto optimality, by the user's negotiation strategies selected, and by the quality of system recognition, interpretation and responses. We compared human-human and human-agent performance with respect to the number and quality of agreements reached, estimated cooperativeness level, and frequency of accepted negative outcomes. Evaluation experiments showed promising, consistently positive results throughout the range of the relevant scales.","PeriodicalId":37604,"journal":{"name":"Dialogue and Discourse","volume":"132 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Towards Integration of Cognitive Models in Dialogue Management: Designing the Virtual Negotiation Coach Application\",\"authors\":\"A. Malchanau, V. Petukhova, H. Bunt\",\"doi\":\"10.5087/DAD.2018.202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach to flexible and adaptive dialogue management driven by cognitive modelling of human dialogue behaviour. Artificial intelligent agents, based on the ACT-R cognitive architecture, together with human actors are participating in a (meta)cognitive skills training within a negotiation scenario. The agent  employs instance-based learning to decide about its own actions and to reflect on the behaviour of the opponent. We show that task-related actions can be handled by a cognitive agent who is a plausible dialogue partner.  Separating task-related and dialogue control actions enables the application of sophisticated models along with a flexible architecture  in which  various alternative modelling methods can be combined. We evaluated the proposed approach with users assessing  the relative contribution of various factors to the overall usability of a dialogue system. Subjective perception of effectiveness, efficiency and satisfaction were correlated with various objective performance metrics, e.g. number of (in)appropriate system responses, recovery strategies, and interaction pace. It was observed that the dialogue system usability is determined most by the quality of agreements reached in terms of estimated Pareto optimality, by the user's negotiation strategies selected, and by the quality of system recognition, interpretation and responses. We compared human-human and human-agent performance with respect to the number and quality of agreements reached, estimated cooperativeness level, and frequency of accepted negative outcomes. Evaluation experiments showed promising, consistently positive results throughout the range of the relevant scales.\",\"PeriodicalId\":37604,\"journal\":{\"name\":\"Dialogue and Discourse\",\"volume\":\"132 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dialogue and Discourse\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5087/DAD.2018.202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dialogue and Discourse","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5087/DAD.2018.202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种基于人类对话行为认知模型的灵活适应性对话管理方法。基于ACT-R认知架构的人工智能代理与人类参与者一起参与谈判场景中的(元)认知技能训练。智能体使用基于实例的学习来决定自己的行为,并反映对手的行为。我们表明,与任务相关的动作可以由一个可信的对话伙伴认知代理来处理。分离与任务相关的和对话控制操作使复杂模型的应用程序能够与灵活的体系结构一起使用,在该体系结构中可以组合各种可选的建模方法。我们通过用户评估各种因素对对话系统整体可用性的相对贡献来评估所提出的方法。有效性、效率和满意度的主观感知与各种客观绩效指标相关,例如适当系统响应的数量、恢复策略和交互速度。据观察,对话系统的可用性主要取决于根据估计的帕累托最优性达成的协议的质量、用户所选择的谈判策略以及系统识别、解释和响应的质量。我们比较了人类和人类代理在达成协议的数量和质量、估计的合作水平和接受负面结果的频率方面的表现。评估实验在相关量表的整个范围内显示出有希望的、一致的积极结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Integration of Cognitive Models in Dialogue Management: Designing the Virtual Negotiation Coach Application
This paper presents an approach to flexible and adaptive dialogue management driven by cognitive modelling of human dialogue behaviour. Artificial intelligent agents, based on the ACT-R cognitive architecture, together with human actors are participating in a (meta)cognitive skills training within a negotiation scenario. The agent  employs instance-based learning to decide about its own actions and to reflect on the behaviour of the opponent. We show that task-related actions can be handled by a cognitive agent who is a plausible dialogue partner.  Separating task-related and dialogue control actions enables the application of sophisticated models along with a flexible architecture  in which  various alternative modelling methods can be combined. We evaluated the proposed approach with users assessing  the relative contribution of various factors to the overall usability of a dialogue system. Subjective perception of effectiveness, efficiency and satisfaction were correlated with various objective performance metrics, e.g. number of (in)appropriate system responses, recovery strategies, and interaction pace. It was observed that the dialogue system usability is determined most by the quality of agreements reached in terms of estimated Pareto optimality, by the user's negotiation strategies selected, and by the quality of system recognition, interpretation and responses. We compared human-human and human-agent performance with respect to the number and quality of agreements reached, estimated cooperativeness level, and frequency of accepted negative outcomes. Evaluation experiments showed promising, consistently positive results throughout the range of the relevant scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dialogue and Discourse
Dialogue and Discourse Arts and Humanities-Language and Linguistics
CiteScore
1.90
自引率
0.00%
发文量
7
审稿时长
12 weeks
期刊介绍: D&D seeks previously unpublished, high quality articles on the analysis of discourse and dialogue that contain -experimental and/or theoretical studies related to the construction, representation, and maintenance of (linguistic) context -linguistic analysis of phenomena characteristic of discourse and/or dialogue (including, but not limited to: reference and anaphora, presupposition and accommodation, topicality and salience, implicature, ---discourse structure and rhetorical relations, discourse markers and particles, the semantics and -pragmatics of dialogue acts, questions, imperatives, non-sentential utterances, intonation, and meta--communicative phenomena such as repair and grounding) -experimental and/or theoretical studies of agents'' information states and their dynamics in conversational interaction -new analytical frameworks that advance theoretical studies of discourse and dialogue -research on systems performing coreference resolution, discourse structure parsing, event and temporal -structure, and reference resolution in multimodal communication -experimental and/or theoretical results yielding new insight into non-linguistic interaction in -communication -work on natural language understanding (including spoken language understanding), dialogue management, -reasoning, and natural language generation (including text-to-speech) in dialogue systems -work related to the design and engineering of dialogue systems (including, but not limited to: -evaluation, usability design and testing, rapid application deployment, embodied agents, affect detection, -mixed-initiative, adaptation, and user modeling). -extremely well-written surveys of existing work. Highest priority is given to research reports that are specifically written for a multidisciplinary audience. The audience is primarily researchers on discourse and dialogue and its associated fields, including computer scientists, linguists, psychologists, philosophers, roboticists, sociologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信