{"title":"暹罗网络:两个流形的故事","authors":"S. Roy, M. Harandi, R. Nock, R. Hartley","doi":"10.1109/ICCV.2019.00314","DOIUrl":null,"url":null,"abstract":"Siamese networks are non-linear deep models that have found their ways into a broad set of problems in learning theory, thanks to their embedding capabilities. In this paper, we study Siamese networks from a new perspective and question the validity of their training procedure. We show that in the majority of cases, the objective of a Siamese network is endowed with an invariance property. Neglecting the invariance property leads to a hindrance in training the Siamese networks. To alleviate this issue, we propose two Riemannian structures and generalize a well-established accelerated stochastic gradient descent method to take into account the proposed Riemannian structures. Our empirical evaluations suggest that by making use of the Riemannian geometry, we achieve state-of-the-art results against several algorithms for the challenging problem of fine-grained image classification.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"25 1","pages":"3046-3055"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Siamese Networks: The Tale of Two Manifolds\",\"authors\":\"S. Roy, M. Harandi, R. Nock, R. Hartley\",\"doi\":\"10.1109/ICCV.2019.00314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Siamese networks are non-linear deep models that have found their ways into a broad set of problems in learning theory, thanks to their embedding capabilities. In this paper, we study Siamese networks from a new perspective and question the validity of their training procedure. We show that in the majority of cases, the objective of a Siamese network is endowed with an invariance property. Neglecting the invariance property leads to a hindrance in training the Siamese networks. To alleviate this issue, we propose two Riemannian structures and generalize a well-established accelerated stochastic gradient descent method to take into account the proposed Riemannian structures. Our empirical evaluations suggest that by making use of the Riemannian geometry, we achieve state-of-the-art results against several algorithms for the challenging problem of fine-grained image classification.\",\"PeriodicalId\":6728,\"journal\":{\"name\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"25 1\",\"pages\":\"3046-3055\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2019.00314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Siamese networks are non-linear deep models that have found their ways into a broad set of problems in learning theory, thanks to their embedding capabilities. In this paper, we study Siamese networks from a new perspective and question the validity of their training procedure. We show that in the majority of cases, the objective of a Siamese network is endowed with an invariance property. Neglecting the invariance property leads to a hindrance in training the Siamese networks. To alleviate this issue, we propose two Riemannian structures and generalize a well-established accelerated stochastic gradient descent method to take into account the proposed Riemannian structures. Our empirical evaluations suggest that by making use of the Riemannian geometry, we achieve state-of-the-art results against several algorithms for the challenging problem of fine-grained image classification.