{"title":"可解baumslag -孤子群中的共轭曲率","authors":"J. Taback, Alden Walker","doi":"10.1142/S179352532150031X","DOIUrl":null,"url":null,"abstract":"For an element in $BS(1,n) = \\langle t,a | tat^{-1} = a^n \\rangle$ written in the normal form $t^{-u}a^vt^w$ with $u,w \\geq 0$ and $v \\in \\mathbb{Z}$, we exhibit a geodesic word representing the element and give a formula for its word length with respect to the generating set $\\{t,a\\}$. Using this word length formula, we prove that there are sets of elements of positive density of positive, negative and zero conjugation curvature, as defined by Bar Natan, Duchin and Kropholler.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Conjugation curvature in solvable Baumslag–Solitar groups\",\"authors\":\"J. Taback, Alden Walker\",\"doi\":\"10.1142/S179352532150031X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an element in $BS(1,n) = \\\\langle t,a | tat^{-1} = a^n \\\\rangle$ written in the normal form $t^{-u}a^vt^w$ with $u,w \\\\geq 0$ and $v \\\\in \\\\mathbb{Z}$, we exhibit a geodesic word representing the element and give a formula for its word length with respect to the generating set $\\\\{t,a\\\\}$. Using this word length formula, we prove that there are sets of elements of positive density of positive, negative and zero conjugation curvature, as defined by Bar Natan, Duchin and Kropholler.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S179352532150031X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S179352532150031X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conjugation curvature in solvable Baumslag–Solitar groups
For an element in $BS(1,n) = \langle t,a | tat^{-1} = a^n \rangle$ written in the normal form $t^{-u}a^vt^w$ with $u,w \geq 0$ and $v \in \mathbb{Z}$, we exhibit a geodesic word representing the element and give a formula for its word length with respect to the generating set $\{t,a\}$. Using this word length formula, we prove that there are sets of elements of positive density of positive, negative and zero conjugation curvature, as defined by Bar Natan, Duchin and Kropholler.