可解baumslag -孤子群中的共轭曲率

J. Taback, Alden Walker
{"title":"可解baumslag -孤子群中的共轭曲率","authors":"J. Taback, Alden Walker","doi":"10.1142/S179352532150031X","DOIUrl":null,"url":null,"abstract":"For an element in $BS(1,n) = \\langle t,a | tat^{-1} = a^n \\rangle$ written in the normal form $t^{-u}a^vt^w$ with $u,w \\geq 0$ and $v \\in \\mathbb{Z}$, we exhibit a geodesic word representing the element and give a formula for its word length with respect to the generating set $\\{t,a\\}$. Using this word length formula, we prove that there are sets of elements of positive density of positive, negative and zero conjugation curvature, as defined by Bar Natan, Duchin and Kropholler.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Conjugation curvature in solvable Baumslag–Solitar groups\",\"authors\":\"J. Taback, Alden Walker\",\"doi\":\"10.1142/S179352532150031X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an element in $BS(1,n) = \\\\langle t,a | tat^{-1} = a^n \\\\rangle$ written in the normal form $t^{-u}a^vt^w$ with $u,w \\\\geq 0$ and $v \\\\in \\\\mathbb{Z}$, we exhibit a geodesic word representing the element and give a formula for its word length with respect to the generating set $\\\\{t,a\\\\}$. Using this word length formula, we prove that there are sets of elements of positive density of positive, negative and zero conjugation curvature, as defined by Bar Natan, Duchin and Kropholler.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S179352532150031X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S179352532150031X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于以格式$t^{-u}a^vt^w$(包含$u,w \geq 0$和$v \in \mathbb{Z}$)书写的$BS(1,n) = \langle t,a | tat^{-1} = a^n \rangle$中的一个元素,我们展示了一个表示该元素的测地线单词,并给出了一个相对于发电集$\{t,a\}$的单词长度公式。利用这个词长公式,我们证明了存在Bar Natan, Duchin和Kropholler定义的共轭曲率为正、负、零的正密度元素集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conjugation curvature in solvable Baumslag–Solitar groups
For an element in $BS(1,n) = \langle t,a | tat^{-1} = a^n \rangle$ written in the normal form $t^{-u}a^vt^w$ with $u,w \geq 0$ and $v \in \mathbb{Z}$, we exhibit a geodesic word representing the element and give a formula for its word length with respect to the generating set $\{t,a\}$. Using this word length formula, we prove that there are sets of elements of positive density of positive, negative and zero conjugation curvature, as defined by Bar Natan, Duchin and Kropholler.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信