一种新的多元样条数据拟合的计算方面

P. B. Zwart
{"title":"一种新的多元样条数据拟合的计算方面","authors":"P. B. Zwart","doi":"10.1145/800192.805747","DOIUrl":null,"url":null,"abstract":"The multivariate splines considered are piecewise polynomials of total degree s, with continuous derivatives of order s-1. The piecewise domains consist of the polyhedra obtained by partitioning En with any k hyperplanes. For nondegenerate partitions, the splines have data fitting power which is greater than a single polynomial and less than the standard tensor product splines. An especially simple canonical form represents these splines. This representation, although numerically ill-conditioned, can be effectively used with standard software on problems with 1≤s≤3, 1≤n≤3, 1≤k≤8. Fixed partition problems can be solved with IBM's Scientific Subroutine Package programs for min-max or least squares fitting. Variable partitions can be handled with Marquardt's method, modified to avoid redundant placement of partitions.","PeriodicalId":72321,"journal":{"name":"ASSETS. Annual ACM Conference on Assistive Technologies","volume":"145 1","pages":"409-414"},"PeriodicalIF":0.0000,"publicationDate":"1973-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational aspects of data fitting with a new multivariate spline\",\"authors\":\"P. B. Zwart\",\"doi\":\"10.1145/800192.805747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multivariate splines considered are piecewise polynomials of total degree s, with continuous derivatives of order s-1. The piecewise domains consist of the polyhedra obtained by partitioning En with any k hyperplanes. For nondegenerate partitions, the splines have data fitting power which is greater than a single polynomial and less than the standard tensor product splines. An especially simple canonical form represents these splines. This representation, although numerically ill-conditioned, can be effectively used with standard software on problems with 1≤s≤3, 1≤n≤3, 1≤k≤8. Fixed partition problems can be solved with IBM's Scientific Subroutine Package programs for min-max or least squares fitting. Variable partitions can be handled with Marquardt's method, modified to avoid redundant placement of partitions.\",\"PeriodicalId\":72321,\"journal\":{\"name\":\"ASSETS. Annual ACM Conference on Assistive Technologies\",\"volume\":\"145 1\",\"pages\":\"409-414\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1973-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASSETS. Annual ACM Conference on Assistive Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800192.805747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASSETS. Annual ACM Conference on Assistive Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800192.805747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

所考虑的多元样条是总次为s的分段多项式,其导数为s-1阶。分段域由En与任意k个超平面划分得到的多面体组成。对于非退化分区,样条的数据拟合能力大于单个多项式,小于标准张量积样条。一个特别简单的标准形式表示这些样条。这种表示虽然在数值上是病态的,但可以在标准软件中有效地用于1≤s≤3,1≤n≤3,1≤k≤8的问题。固定分区问题可以用IBM的Scientific suboutine Package程序解决,用于最小-最大或最小二乘拟合。可变分区可以用Marquardt的方法处理,修改后可以避免分区的冗余放置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational aspects of data fitting with a new multivariate spline
The multivariate splines considered are piecewise polynomials of total degree s, with continuous derivatives of order s-1. The piecewise domains consist of the polyhedra obtained by partitioning En with any k hyperplanes. For nondegenerate partitions, the splines have data fitting power which is greater than a single polynomial and less than the standard tensor product splines. An especially simple canonical form represents these splines. This representation, although numerically ill-conditioned, can be effectively used with standard software on problems with 1≤s≤3, 1≤n≤3, 1≤k≤8. Fixed partition problems can be solved with IBM's Scientific Subroutine Package programs for min-max or least squares fitting. Variable partitions can be handled with Marquardt's method, modified to avoid redundant placement of partitions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信