{"title":"测量的规律性与平滑性","authors":"J. Fraser, Sascha Troscheit","doi":"10.2140/pjm.2021.311.257","DOIUrl":null,"url":null,"abstract":"The Assouad and lower dimensions and dimension spectra quantify the regularity of a measure by considering the relative measure of concentric balls. On the other hand, one can quantify the smoothness of an absolutely continuous measure by considering the $L^p$ norms of its density. We establish sharp relationships between these two notions. Roughly speaking, we show that smooth measures must be regular, but that regular measures need not be smooth.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Regularity versus smoothness of measures\",\"authors\":\"J. Fraser, Sascha Troscheit\",\"doi\":\"10.2140/pjm.2021.311.257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Assouad and lower dimensions and dimension spectra quantify the regularity of a measure by considering the relative measure of concentric balls. On the other hand, one can quantify the smoothness of an absolutely continuous measure by considering the $L^p$ norms of its density. We establish sharp relationships between these two notions. Roughly speaking, we show that smooth measures must be regular, but that regular measures need not be smooth.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2021.311.257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/pjm.2021.311.257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Assouad and lower dimensions and dimension spectra quantify the regularity of a measure by considering the relative measure of concentric balls. On the other hand, one can quantify the smoothness of an absolutely continuous measure by considering the $L^p$ norms of its density. We establish sharp relationships between these two notions. Roughly speaking, we show that smooth measures must be regular, but that regular measures need not be smooth.