最流行分布之间的距离调查

M. Kelbert
{"title":"最流行分布之间的距离调查","authors":"M. Kelbert","doi":"10.3390/analytics2010012","DOIUrl":null,"url":null,"abstract":"We present a number of upper and lower bounds for the total variation distances between the most popular probability distributions. In particular, some estimates of the total variation distances in the cases of multivariate Gaussian distributions, Poisson distributions, binomial distributions, between a binomial and a Poisson distribution, and also in the case of negative binomial distributions are given. Next, the estimations of Lévy–Prohorov distance in terms of Wasserstein metrics are discussed, and Fréchet, Wasserstein and Hellinger distances for multivariate Gaussian distributions are evaluated. Some novel context-sensitive distances are introduced and a number of bounds mimicking the classical results from the information theory are proved.","PeriodicalId":93078,"journal":{"name":"Big data analytics","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Survey of Distances between the Most Popular Distributions\",\"authors\":\"M. Kelbert\",\"doi\":\"10.3390/analytics2010012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a number of upper and lower bounds for the total variation distances between the most popular probability distributions. In particular, some estimates of the total variation distances in the cases of multivariate Gaussian distributions, Poisson distributions, binomial distributions, between a binomial and a Poisson distribution, and also in the case of negative binomial distributions are given. Next, the estimations of Lévy–Prohorov distance in terms of Wasserstein metrics are discussed, and Fréchet, Wasserstein and Hellinger distances for multivariate Gaussian distributions are evaluated. Some novel context-sensitive distances are introduced and a number of bounds mimicking the classical results from the information theory are proved.\",\"PeriodicalId\":93078,\"journal\":{\"name\":\"Big data analytics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big data analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/analytics2010012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big data analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytics2010012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一些最流行的概率分布之间的总变异距离的上界和下界。特别给出了多元高斯分布、泊松分布、二项分布、二项分布与泊松分布之间的总变异距离的估计,以及负二项分布的估计。其次,讨论了基于Wasserstein度量的l - prohorov距离的估计,并评估了多元高斯分布的fr, Wasserstein和Hellinger距离。引入了一些新的上下文敏感距离,并证明了一些模拟信息论经典结果的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Survey of Distances between the Most Popular Distributions
We present a number of upper and lower bounds for the total variation distances between the most popular probability distributions. In particular, some estimates of the total variation distances in the cases of multivariate Gaussian distributions, Poisson distributions, binomial distributions, between a binomial and a Poisson distribution, and also in the case of negative binomial distributions are given. Next, the estimations of Lévy–Prohorov distance in terms of Wasserstein metrics are discussed, and Fréchet, Wasserstein and Hellinger distances for multivariate Gaussian distributions are evaluated. Some novel context-sensitive distances are introduced and a number of bounds mimicking the classical results from the information theory are proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信