Toeplitz算子禁区内的分数指数衰减

IF 0.9 3区 数学 Q2 MATHEMATICS
Alix Deleporte
{"title":"Toeplitz算子禁区内的分数指数衰减","authors":"Alix Deleporte","doi":"10.4171/dm/778","DOIUrl":null,"url":null,"abstract":"We prove several results of concentration for eigenfunctions in Toeplitz quantization. With mild assumptions on the regularity, we prove that eigenfunctions are $O(exp(-cN^{\\delta}))$ away from the corresponding level set of the symbol, where N is the inverse semiclassical parameter and $0 < \\delta < 1$ depends on the regularity. As an application, we prove a precise bound for the free energy of spin systems at high temperatures, sharpening a result of Lieb.","PeriodicalId":50567,"journal":{"name":"Documenta Mathematica","volume":"8 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fractional Exponential Decay in the Forbidden Region for Toeplitz Operators\",\"authors\":\"Alix Deleporte\",\"doi\":\"10.4171/dm/778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove several results of concentration for eigenfunctions in Toeplitz quantization. With mild assumptions on the regularity, we prove that eigenfunctions are $O(exp(-cN^{\\\\delta}))$ away from the corresponding level set of the symbol, where N is the inverse semiclassical parameter and $0 < \\\\delta < 1$ depends on the regularity. As an application, we prove a precise bound for the free energy of spin systems at high temperatures, sharpening a result of Lieb.\",\"PeriodicalId\":50567,\"journal\":{\"name\":\"Documenta Mathematica\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Documenta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/dm/778\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documenta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/dm/778","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们证明了Toeplitz量化中特征函数集中的几个结果。通过对正则性的温和假设,我们证明了特征函数$O(exp(-cN^{\delta}))$远离符号的相应水平集,其中N是逆半经典参数,$0 < \delta < 1$取决于正则性。作为一个应用,我们证明了自旋系统在高温下的自由能的精确界,锐化了Lieb的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Exponential Decay in the Forbidden Region for Toeplitz Operators
We prove several results of concentration for eigenfunctions in Toeplitz quantization. With mild assumptions on the regularity, we prove that eigenfunctions are $O(exp(-cN^{\delta}))$ away from the corresponding level set of the symbol, where N is the inverse semiclassical parameter and $0 < \delta < 1$ depends on the regularity. As an application, we prove a precise bound for the free energy of spin systems at high temperatures, sharpening a result of Lieb.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Documenta Mathematica
Documenta Mathematica 数学-数学
CiteScore
1.60
自引率
11.10%
发文量
0
审稿时长
>12 weeks
期刊介绍: DOCUMENTA MATHEMATICA is open to all mathematical fields und internationally oriented Documenta Mathematica publishes excellent and carefully refereed articles of general interest, which preferably should rely only on refereed sources and references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信