与关联有理函数相关的柯西型泛函方程

IF 0.1 Q4 MATHEMATICS
K. Domańska
{"title":"与关联有理函数相关的柯西型泛函方程","authors":"K. Domańska","doi":"10.2478/aupcsm-2019-0011","DOIUrl":null,"url":null,"abstract":"Abstract L. Losonczi [4] determined local solutions of the generalized Cauchy equation f(F (x, y)) = f(x) + f(y) on components of the definition of a given associative rational function F. The class of the associative rational function was described by A. Chéritat [1] and his work was followed by paper [3] of the author. The aim of the present paper is to describe local solutions of the equation considered for some singular associative rational functions.","PeriodicalId":53863,"journal":{"name":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","volume":"1 1","pages":"145 - 156"},"PeriodicalIF":0.1000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cauchy type functional equations related to some associative rational functions\",\"authors\":\"K. Domańska\",\"doi\":\"10.2478/aupcsm-2019-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract L. Losonczi [4] determined local solutions of the generalized Cauchy equation f(F (x, y)) = f(x) + f(y) on components of the definition of a given associative rational function F. The class of the associative rational function was described by A. Chéritat [1] and his work was followed by paper [3] of the author. The aim of the present paper is to describe local solutions of the equation considered for some singular associative rational functions.\",\"PeriodicalId\":53863,\"journal\":{\"name\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"volume\":\"1 1\",\"pages\":\"145 - 156\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/aupcsm-2019-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/aupcsm-2019-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要L. Losonczi[4]确定了广义柯西方程f(f(x, y)) = f(x) + f(y)在给定有理函数f的定义分量上的局部解,该类有理函数由a . ch ritat[1]描述,作者的论文[3]继承了他的工作。本文的目的是描述一类奇异结合有理函数方程的局部解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cauchy type functional equations related to some associative rational functions
Abstract L. Losonczi [4] determined local solutions of the generalized Cauchy equation f(F (x, y)) = f(x) + f(y) on components of the definition of a given associative rational function F. The class of the associative rational function was described by A. Chéritat [1] and his work was followed by paper [3] of the author. The aim of the present paper is to describe local solutions of the equation considered for some singular associative rational functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.10%
发文量
5
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信