提高人机交互安全性的鲁棒阻抗控制器

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Curt A. Laubscher, J. Sawicki
{"title":"提高人机交互安全性的鲁棒阻抗控制器","authors":"Curt A. Laubscher, J. Sawicki","doi":"10.1115/1.4050504","DOIUrl":null,"url":null,"abstract":"\n This paper presents a novel impedance controller modified with a switching strategy for the purpose of improving safety in human–robot interactions. Under normal operating conditions, an impedance controller is enabled when adequate tracking performance is maintained in the presence of bounded disturbances. However, if disturbances are greater than anticipated such that tracking performance is degraded, the proposed controller temporarily switches modes to a control strategy better apt to limit control inputs. With disturbances returning to the prescribed bounds, tracking performance will be restored and the impedance controller will resume for nominal operation. The control parameters are constrained by a few conditions necessary for smooth operation. First, a pair of equality constraints is required for the control signal to be continuous when switching control modes. Second, a Lyapunov analysis is performed to formulate an equality constraint on the control parameters to ensure only a single switch occurs when changing control modes to avert control chatter. Third, a matrix inequality constraint is necessary to ensure a robust positive invariant set is formed for when impedance control is active. Numerical simulations are provided to illustrate the controller and conditions. The simulation results successfully validate the presented theory, demonstrating how the constraints yield a continuous control signal, eliminate switching chatter, and permit robustness to disturbances.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"31 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Robust Impedance Controller for Improved Safety in Human–Robot Interaction\",\"authors\":\"Curt A. Laubscher, J. Sawicki\",\"doi\":\"10.1115/1.4050504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents a novel impedance controller modified with a switching strategy for the purpose of improving safety in human–robot interactions. Under normal operating conditions, an impedance controller is enabled when adequate tracking performance is maintained in the presence of bounded disturbances. However, if disturbances are greater than anticipated such that tracking performance is degraded, the proposed controller temporarily switches modes to a control strategy better apt to limit control inputs. With disturbances returning to the prescribed bounds, tracking performance will be restored and the impedance controller will resume for nominal operation. The control parameters are constrained by a few conditions necessary for smooth operation. First, a pair of equality constraints is required for the control signal to be continuous when switching control modes. Second, a Lyapunov analysis is performed to formulate an equality constraint on the control parameters to ensure only a single switch occurs when changing control modes to avert control chatter. Third, a matrix inequality constraint is necessary to ensure a robust positive invariant set is formed for when impedance control is active. Numerical simulations are provided to illustrate the controller and conditions. The simulation results successfully validate the presented theory, demonstrating how the constraints yield a continuous control signal, eliminate switching chatter, and permit robustness to disturbances.\",\"PeriodicalId\":54846,\"journal\":{\"name\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4050504\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4050504","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 3

摘要

为了提高人机交互的安全性,本文提出了一种基于切换策略的阻抗控制器。在正常工作条件下,当存在有界干扰时保持足够的跟踪性能时,阻抗控制器启用。然而,如果干扰大于预期,导致跟踪性能下降,所提出的控制器将暂时切换到更倾向于限制控制输入的控制策略。随着扰动返回到规定的范围,跟踪性能将恢复,阻抗控制器将恢复标称操作。控制参数受到平稳运行所需的几个条件的约束。首先,在切换控制模式时,需要一对等式约束来保证控制信号连续。其次,进行李亚普诺夫分析以制定控制参数的等式约束,以确保在改变控制模式时仅发生一次切换以避免控制颤振。第三,需要一个矩阵不等式约束来保证在阻抗控制处于活动状态时形成一个鲁棒的正不变量集。数值模拟说明了控制器和控制条件。仿真结果成功地验证了所提出的理论,展示了约束如何产生连续的控制信号,消除切换颤振,并允许对干扰的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Impedance Controller for Improved Safety in Human–Robot Interaction
This paper presents a novel impedance controller modified with a switching strategy for the purpose of improving safety in human–robot interactions. Under normal operating conditions, an impedance controller is enabled when adequate tracking performance is maintained in the presence of bounded disturbances. However, if disturbances are greater than anticipated such that tracking performance is degraded, the proposed controller temporarily switches modes to a control strategy better apt to limit control inputs. With disturbances returning to the prescribed bounds, tracking performance will be restored and the impedance controller will resume for nominal operation. The control parameters are constrained by a few conditions necessary for smooth operation. First, a pair of equality constraints is required for the control signal to be continuous when switching control modes. Second, a Lyapunov analysis is performed to formulate an equality constraint on the control parameters to ensure only a single switch occurs when changing control modes to avert control chatter. Third, a matrix inequality constraint is necessary to ensure a robust positive invariant set is formed for when impedance control is active. Numerical simulations are provided to illustrate the controller and conditions. The simulation results successfully validate the presented theory, demonstrating how the constraints yield a continuous control signal, eliminate switching chatter, and permit robustness to disturbances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
11.80%
发文量
79
审稿时长
24.0 months
期刊介绍: The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信