{"title":"演化超曲面上随机系数的平流扩散方程","authors":"A. Djurdjevac","doi":"10.4171/IFB/391","DOIUrl":null,"url":null,"abstract":"We present the analysis of advection-diffusion equations with random coefficients on moving hypersurfaces. We define weak and strong material derivative, that take into account also the spacial movement. Then we define the solution space for these kind of equations, which is the Bochner-type space of random functions defined on moving domain. Under suitable regularity assumptions we prove the existence and uniqueness of solutions of the concerned equation, and also we give some regularity results about the solution.","PeriodicalId":13863,"journal":{"name":"Interfaces and Free Boundaries","volume":"17 1","pages":"525-552"},"PeriodicalIF":1.2000,"publicationDate":"2018-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Advection-diffusion equations with random coefficientson evolving hypersurfaces\",\"authors\":\"A. Djurdjevac\",\"doi\":\"10.4171/IFB/391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the analysis of advection-diffusion equations with random coefficients on moving hypersurfaces. We define weak and strong material derivative, that take into account also the spacial movement. Then we define the solution space for these kind of equations, which is the Bochner-type space of random functions defined on moving domain. Under suitable regularity assumptions we prove the existence and uniqueness of solutions of the concerned equation, and also we give some regularity results about the solution.\",\"PeriodicalId\":13863,\"journal\":{\"name\":\"Interfaces and Free Boundaries\",\"volume\":\"17 1\",\"pages\":\"525-552\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interfaces and Free Boundaries\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/IFB/391\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfaces and Free Boundaries","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/IFB/391","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Advection-diffusion equations with random coefficientson evolving hypersurfaces
We present the analysis of advection-diffusion equations with random coefficients on moving hypersurfaces. We define weak and strong material derivative, that take into account also the spacial movement. Then we define the solution space for these kind of equations, which is the Bochner-type space of random functions defined on moving domain. Under suitable regularity assumptions we prove the existence and uniqueness of solutions of the concerned equation, and also we give some regularity results about the solution.
期刊介绍:
Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application.