演化超曲面上随机系数的平流扩散方程

IF 1.2 4区 数学 Q1 MATHEMATICS
A. Djurdjevac
{"title":"演化超曲面上随机系数的平流扩散方程","authors":"A. Djurdjevac","doi":"10.4171/IFB/391","DOIUrl":null,"url":null,"abstract":"We present the analysis of advection-diffusion equations with random coefficients on moving hypersurfaces. We define weak and strong material derivative, that take into account also the spacial movement. Then we define the solution space for these kind of equations, which is the Bochner-type space of random functions defined on moving domain. Under suitable regularity assumptions we prove the existence and uniqueness of solutions of the concerned equation, and also we give some regularity results about the solution.","PeriodicalId":13863,"journal":{"name":"Interfaces and Free Boundaries","volume":"17 1","pages":"525-552"},"PeriodicalIF":1.2000,"publicationDate":"2018-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Advection-diffusion equations with random coefficientson evolving hypersurfaces\",\"authors\":\"A. Djurdjevac\",\"doi\":\"10.4171/IFB/391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the analysis of advection-diffusion equations with random coefficients on moving hypersurfaces. We define weak and strong material derivative, that take into account also the spacial movement. Then we define the solution space for these kind of equations, which is the Bochner-type space of random functions defined on moving domain. Under suitable regularity assumptions we prove the existence and uniqueness of solutions of the concerned equation, and also we give some regularity results about the solution.\",\"PeriodicalId\":13863,\"journal\":{\"name\":\"Interfaces and Free Boundaries\",\"volume\":\"17 1\",\"pages\":\"525-552\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interfaces and Free Boundaries\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/IFB/391\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfaces and Free Boundaries","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/IFB/391","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

给出了运动超曲面上具有随机系数的平流扩散方程的分析。我们定义弱和强物质导数,也考虑到空间运动。然后定义了这类方程的解空间,即在运动域上定义的随机函数的bochner型空间。在适当的正则性假设下,证明了该方程解的存在唯一性,并给出了该方程解的一些正则性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advection-diffusion equations with random coefficientson evolving hypersurfaces
We present the analysis of advection-diffusion equations with random coefficients on moving hypersurfaces. We define weak and strong material derivative, that take into account also the spacial movement. Then we define the solution space for these kind of equations, which is the Bochner-type space of random functions defined on moving domain. Under suitable regularity assumptions we prove the existence and uniqueness of solutions of the concerned equation, and also we give some regularity results about the solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
17
审稿时长
>12 weeks
期刊介绍: Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信