弗兰克尔猜想的证明:一种非建设性方法

IF 0.3 Q4 MATHEMATICS
Yonghong Liu
{"title":"弗兰克尔猜想的证明:一种非建设性方法","authors":"Yonghong Liu","doi":"10.3844/jmssp.2022.134.137","DOIUrl":null,"url":null,"abstract":": Let U be a finite set and X a family of nonempty subsets of U , which is closed under unions. We establish a connection between Frankl's conjecture and equipollence sets, in which a complementary set is an Equipollence set on the Frobenius group. We complete the proof of the union-closed sets using a non-constructive approach. The proof relies upon that we need to prove, that the series of the prime divisor diverges, and there exists x i which appears at least half distributed in subsets.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"247 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof of Frankl's Conjecture: A Non-Constructive Approach\",\"authors\":\"Yonghong Liu\",\"doi\":\"10.3844/jmssp.2022.134.137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Let U be a finite set and X a family of nonempty subsets of U , which is closed under unions. We establish a connection between Frankl's conjecture and equipollence sets, in which a complementary set is an Equipollence set on the Frobenius group. We complete the proof of the union-closed sets using a non-constructive approach. The proof relies upon that we need to prove, that the series of the prime divisor diverges, and there exists x i which appears at least half distributed in subsets.\",\"PeriodicalId\":41981,\"journal\":{\"name\":\"Jordan Journal of Mathematics and Statistics\",\"volume\":\"247 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/jmssp.2022.134.137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jmssp.2022.134.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

:设U是一个有限集,X是U的非空子集族,U的子集在并并下闭。建立了Frankl猜想与等价集之间的联系,其中互补集是Frobenius群上的等价集。我们用非建设性的方法完成了并闭集的证明。证明依赖于我们需要证明,素数的级数是发散的,并且存在xi至少一半分布在子集中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof of Frankl's Conjecture: A Non-Constructive Approach
: Let U be a finite set and X a family of nonempty subsets of U , which is closed under unions. We establish a connection between Frankl's conjecture and equipollence sets, in which a complementary set is an Equipollence set on the Frobenius group. We complete the proof of the union-closed sets using a non-constructive approach. The proof relies upon that we need to prove, that the series of the prime divisor diverges, and there exists x i which appears at least half distributed in subsets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信