命题抽象分离逻辑的标记序列证明搜索

Zhé Hóu, Ranald Clouston, R. Goré, Alwen Tiu
{"title":"命题抽象分离逻辑的标记序列证明搜索","authors":"Zhé Hóu, Ranald Clouston, R. Goré, Alwen Tiu","doi":"10.1145/2535838.2535864","DOIUrl":null,"url":null,"abstract":"Abstract separation logics are a family of extensions of Hoare logic for reasoning about programs that mutate memory. These logics are \"abstract\" because they are independent of any particular concrete memory model. Their assertion languages, called propositional abstract separation logics, extend the logic of (Boolean) Bunched Implications (BBI) in various ways. We develop a modular proof theory for various propositional abstract separation logics using cut-free labelled sequent calculi. We first extend the cut-fee labelled sequent calculus for BBI of Hou et al to handle Calcagno et al's original logic of separation algebras by adding sound rules for partial-determinism and cancellativity, while preserving cut-elimination. We prove the completeness of our calculus via a sound intermediate calculus that enables us to construct counter-models from the failure to find a proof. We then capture other propositional abstract separation logics by adding sound rules for indivisible unit and disjointness, while maintaining completeness and cut-elimination. We present a theorem prover based on our labelled calculus for these logics.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Proof search for propositional abstract separation logics via labelled sequents\",\"authors\":\"Zhé Hóu, Ranald Clouston, R. Goré, Alwen Tiu\",\"doi\":\"10.1145/2535838.2535864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract separation logics are a family of extensions of Hoare logic for reasoning about programs that mutate memory. These logics are \\\"abstract\\\" because they are independent of any particular concrete memory model. Their assertion languages, called propositional abstract separation logics, extend the logic of (Boolean) Bunched Implications (BBI) in various ways. We develop a modular proof theory for various propositional abstract separation logics using cut-free labelled sequent calculi. We first extend the cut-fee labelled sequent calculus for BBI of Hou et al to handle Calcagno et al's original logic of separation algebras by adding sound rules for partial-determinism and cancellativity, while preserving cut-elimination. We prove the completeness of our calculus via a sound intermediate calculus that enables us to construct counter-models from the failure to find a proof. We then capture other propositional abstract separation logics by adding sound rules for indivisible unit and disjointness, while maintaining completeness and cut-elimination. We present a theorem prover based on our labelled calculus for these logics.\",\"PeriodicalId\":20683,\"journal\":{\"name\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2535838.2535864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2535838.2535864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

抽象分离逻辑是霍尔逻辑的一组扩展,用于对改变内存的程序进行推理。这些逻辑是“抽象的”,因为它们独立于任何特定的具体内存模型。他们的断言语言,称为命题抽象分离逻辑,以各种方式扩展(布尔)束暗示(BBI)的逻辑。利用无切割标记序演算,建立了各种命题抽象分离逻辑的模证明理论。我们首先扩展了Hou等人的BBI的切割费标记序列演算,通过添加部分决定论和消去性的健全规则来处理Calcagno等人的分离代数的原始逻辑,同时保留切割消去性。我们通过一个健全的中间演算证明了我们的演算的完备性,这个中间演算使我们能够从找不到证明的失败中构造反模型。然后,在保持完备性和切割消除的同时,通过添加不可分割单元和不连接的健全规则来捕获其他命题抽象分离逻辑。我们在标记演算的基础上给出了这些逻辑的定理证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof search for propositional abstract separation logics via labelled sequents
Abstract separation logics are a family of extensions of Hoare logic for reasoning about programs that mutate memory. These logics are "abstract" because they are independent of any particular concrete memory model. Their assertion languages, called propositional abstract separation logics, extend the logic of (Boolean) Bunched Implications (BBI) in various ways. We develop a modular proof theory for various propositional abstract separation logics using cut-free labelled sequent calculi. We first extend the cut-fee labelled sequent calculus for BBI of Hou et al to handle Calcagno et al's original logic of separation algebras by adding sound rules for partial-determinism and cancellativity, while preserving cut-elimination. We prove the completeness of our calculus via a sound intermediate calculus that enables us to construct counter-models from the failure to find a proof. We then capture other propositional abstract separation logics by adding sound rules for indivisible unit and disjointness, while maintaining completeness and cut-elimination. We present a theorem prover based on our labelled calculus for these logics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信