分数阶随机热方程漂移参数的功率变化估计

IF 0.7 Q3 STATISTICS & PROBABILITY
Z. Khalil, C. Tudor
{"title":"分数阶随机热方程漂移参数的功率变化估计","authors":"Z. Khalil, C. Tudor","doi":"10.15559/19-VMSTA141","DOIUrl":null,"url":null,"abstract":"We define power variation estimators for the drift parameter of the stochastic heat equation with the fractional Laplacian and an additive Gaussian noise which is white in time and white or correlated in space. We prove that these estimators are consistent and asymptotically normal and we derive their rate of convergence under the Wasserstein metric.","PeriodicalId":42685,"journal":{"name":"Modern Stochastics-Theory and Applications","volume":"13 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Estimation of the drift parameter for the fractional stochastic heat equation via power variation\",\"authors\":\"Z. Khalil, C. Tudor\",\"doi\":\"10.15559/19-VMSTA141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define power variation estimators for the drift parameter of the stochastic heat equation with the fractional Laplacian and an additive Gaussian noise which is white in time and white or correlated in space. We prove that these estimators are consistent and asymptotically normal and we derive their rate of convergence under the Wasserstein metric.\",\"PeriodicalId\":42685,\"journal\":{\"name\":\"Modern Stochastics-Theory and Applications\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Stochastics-Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15559/19-VMSTA141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Stochastics-Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/19-VMSTA141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 12

摘要

我们定义了随机热方程漂移参数的功率变化估计量,该漂移参数具有分数阶拉普拉斯函数和加性高斯噪声,该高斯噪声在时间上是白的,在空间上是白的或相关的。我们证明了这些估计量是一致的和渐近正态的,并推导了它们在Wasserstein度量下的收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of the drift parameter for the fractional stochastic heat equation via power variation
We define power variation estimators for the drift parameter of the stochastic heat equation with the fractional Laplacian and an additive Gaussian noise which is white in time and white or correlated in space. We prove that these estimators are consistent and asymptotically normal and we derive their rate of convergence under the Wasserstein metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Stochastics-Theory and Applications
Modern Stochastics-Theory and Applications STATISTICS & PROBABILITY-
CiteScore
1.30
自引率
50.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信