基于情感分析的商业评论分类

Andreea Salinca
{"title":"基于情感分析的商业评论分类","authors":"Andreea Salinca","doi":"10.1109/SYNASC.2015.46","DOIUrl":null,"url":null,"abstract":"The research area of sentiment analysis, opinion mining, sentiment mining and sentiment extraction has gained popularity in the last years. Online reviews are becoming very important criteria in measuring the quality of a business. This paper presents a sentiment analysis approach to business reviews classification using a large reviews dataset provided by Yelp: Yelp Challenge dataset. In this work, we propose several approaches for automatic sentiment classification, using two feature extraction methods and four machine learning models. It is illustrated a comparative study on the effectiveness of the ensemble methods for reviews sentiment classification.","PeriodicalId":6488,"journal":{"name":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"1 1","pages":"247-250"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Business Reviews Classification Using Sentiment Analysis\",\"authors\":\"Andreea Salinca\",\"doi\":\"10.1109/SYNASC.2015.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research area of sentiment analysis, opinion mining, sentiment mining and sentiment extraction has gained popularity in the last years. Online reviews are becoming very important criteria in measuring the quality of a business. This paper presents a sentiment analysis approach to business reviews classification using a large reviews dataset provided by Yelp: Yelp Challenge dataset. In this work, we propose several approaches for automatic sentiment classification, using two feature extraction methods and four machine learning models. It is illustrated a comparative study on the effectiveness of the ensemble methods for reviews sentiment classification.\",\"PeriodicalId\":6488,\"journal\":{\"name\":\"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"1 1\",\"pages\":\"247-250\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2015.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2015.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

近年来,情感分析、意见挖掘、情感挖掘和情感提取等研究领域得到了广泛的关注。在线评论正在成为衡量业务质量的非常重要的标准。本文提出了一种情感分析方法,利用Yelp提供的大型评论数据集:Yelp挑战数据集进行商业评论分类。在这项工作中,我们提出了几种自动情感分类的方法,使用两种特征提取方法和四种机器学习模型。最后对集成方法在评论情感分类中的有效性进行了对比研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Business Reviews Classification Using Sentiment Analysis
The research area of sentiment analysis, opinion mining, sentiment mining and sentiment extraction has gained popularity in the last years. Online reviews are becoming very important criteria in measuring the quality of a business. This paper presents a sentiment analysis approach to business reviews classification using a large reviews dataset provided by Yelp: Yelp Challenge dataset. In this work, we propose several approaches for automatic sentiment classification, using two feature extraction methods and four machine learning models. It is illustrated a comparative study on the effectiveness of the ensemble methods for reviews sentiment classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信