简化选择性抽样的偏差校正:处理内生选择样本的统一无分布方法

Y. Qian, Hui Xie
{"title":"简化选择性抽样的偏差校正:处理内生选择样本的统一无分布方法","authors":"Y. Qian, Hui Xie","doi":"10.3386/W28801","DOIUrl":null,"url":null,"abstract":"Exploiting informative endogenously selected samples while minimizing sample selection bias with minimum modeling assumptions and analytical burden.","PeriodicalId":19091,"journal":{"name":"NBER Working Paper Series","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Simplifying Bias Correction for Selective Sampling: A Unified Distribution-Free Approach to Handling Endogenously Selected Samples\",\"authors\":\"Y. Qian, Hui Xie\",\"doi\":\"10.3386/W28801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploiting informative endogenously selected samples while minimizing sample selection bias with minimum modeling assumptions and analytical burden.\",\"PeriodicalId\":19091,\"journal\":{\"name\":\"NBER Working Paper Series\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NBER Working Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3386/W28801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NBER Working Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3386/W28801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用信息丰富的内生选择样本,同时以最小的建模假设和分析负担最小化样本选择偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simplifying Bias Correction for Selective Sampling: A Unified Distribution-Free Approach to Handling Endogenously Selected Samples
Exploiting informative endogenously selected samples while minimizing sample selection bias with minimum modeling assumptions and analytical burden.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信