{"title":"符号图矩阵树定理的再初等证明","authors":"Shu Li, Jianfeng Wang","doi":"10.1142/s1005386723000408","DOIUrl":null,"url":null,"abstract":"A signed graph [Formula: see text] is a graph [Formula: see text] with vertex set [Formula: see text] and edge set [Formula: see text], together with a function [Formula: see text] assigning a positive or negative sign to each edge. In this paper, we present a more elementary proof for the matrix-tree theorem of signed graphs, which is based on the relations between the incidence matrices and the Laplcians of signed graphs. As an application, we also obtain the results of Monfared and Mallik about the matrix-tree theorem of graphs for signless Laplacians.","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Yet More Elementary Proof of Matrix-Tree Theorem for Signed Graphs\",\"authors\":\"Shu Li, Jianfeng Wang\",\"doi\":\"10.1142/s1005386723000408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A signed graph [Formula: see text] is a graph [Formula: see text] with vertex set [Formula: see text] and edge set [Formula: see text], together with a function [Formula: see text] assigning a positive or negative sign to each edge. In this paper, we present a more elementary proof for the matrix-tree theorem of signed graphs, which is based on the relations between the incidence matrices and the Laplcians of signed graphs. As an application, we also obtain the results of Monfared and Mallik about the matrix-tree theorem of graphs for signless Laplacians.\",\"PeriodicalId\":50958,\"journal\":{\"name\":\"Algebra Colloquium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Colloquium\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386723000408\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386723000408","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Yet More Elementary Proof of Matrix-Tree Theorem for Signed Graphs
A signed graph [Formula: see text] is a graph [Formula: see text] with vertex set [Formula: see text] and edge set [Formula: see text], together with a function [Formula: see text] assigning a positive or negative sign to each edge. In this paper, we present a more elementary proof for the matrix-tree theorem of signed graphs, which is based on the relations between the incidence matrices and the Laplcians of signed graphs. As an application, we also obtain the results of Monfared and Mallik about the matrix-tree theorem of graphs for signless Laplacians.
期刊介绍:
Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.