{"title":"场分布计算中傅里叶-贝塞尔展开的误差估计","authors":"Z. Delecki","doi":"10.1109/APS.1989.134600","DOIUrl":null,"url":null,"abstract":"Formulation, solution, and numerical results are presented for the error estimation of the Fourier-Bessel expansion in the computation of field distribution in coaxial regions. It is shown that there exists an optimal number of terms of the expansion which gives the minimum mean square error. This optimal number of terms is a function of the eigenvalue uncertainties.<<ETX>>","PeriodicalId":11330,"journal":{"name":"Digest on Antennas and Propagation Society International Symposium","volume":"26 1","pages":"21-24 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error estimate of the Fourier-Bessel expansion in computation of field distributions\",\"authors\":\"Z. Delecki\",\"doi\":\"10.1109/APS.1989.134600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formulation, solution, and numerical results are presented for the error estimation of the Fourier-Bessel expansion in the computation of field distribution in coaxial regions. It is shown that there exists an optimal number of terms of the expansion which gives the minimum mean square error. This optimal number of terms is a function of the eigenvalue uncertainties.<<ETX>>\",\"PeriodicalId\":11330,\"journal\":{\"name\":\"Digest on Antennas and Propagation Society International Symposium\",\"volume\":\"26 1\",\"pages\":\"21-24 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest on Antennas and Propagation Society International Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS.1989.134600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest on Antennas and Propagation Society International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.1989.134600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Error estimate of the Fourier-Bessel expansion in computation of field distributions
Formulation, solution, and numerical results are presented for the error estimation of the Fourier-Bessel expansion in the computation of field distribution in coaxial regions. It is shown that there exists an optimal number of terms of the expansion which gives the minimum mean square error. This optimal number of terms is a function of the eigenvalue uncertainties.<>