M. Ouledali, B. Amrani, S. Daoud, S. Louhibi-Fasla, H. Rekab-Djabri, N. Beloufa, S. Bekheira, I. Ouadha
{"title":"ZnSnP2半导体结构、电子和光学性质的理论研究","authors":"M. Ouledali, B. Amrani, S. Daoud, S. Louhibi-Fasla, H. Rekab-Djabri, N. Beloufa, S. Bekheira, I. Ouadha","doi":"10.2478/awutp-2022-0006","DOIUrl":null,"url":null,"abstract":"Abstract The structural, electronic, and optical properties of ZnSnP2 compound were determined using the first principles calculations. We applied the full-potential enhanced plane wave method (FP-LAPW) within the framework of density functional theory (DFT) as implemented in the Wien2k package. The exchange-correlation potential term was treated using the local density approximation (LDA), the generalized gradient approximation (GGA), the Engel–Vosko generalized gradient approximation (EV–GGA) and GGA plus modified Becke– Johnson (mBJ). The lattice parameters of the ZnSnP2 obtained by minimizing the total energy are consistent well with the existing theoretical and experimental results. The Dugdale and MacDonald Grüneisen parameter was found to be 1.43 from the GGA and 1.44 from the LDA, respectively. According to the electronic properties, the band structure analysis of ZnSnP2 shows that it has a direct band gap in the (Γ-Γ) direction with a value of 1.43 eV. We have investigated the optical properties of ZnSnP2 semiconducting compound. The data of the dielectric functions shown that the peaks are positioned at around 2.41, 3.21, 3.83 and 4.09 eV, respectively.","PeriodicalId":31012,"journal":{"name":"Annals of West University of Timisoara Physics","volume":"1993 1","pages":"82 - 94"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Investigation of Structural, Electronic, and Optical Properties of ZnSnP2 Semiconductor\",\"authors\":\"M. Ouledali, B. Amrani, S. Daoud, S. Louhibi-Fasla, H. Rekab-Djabri, N. Beloufa, S. Bekheira, I. Ouadha\",\"doi\":\"10.2478/awutp-2022-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The structural, electronic, and optical properties of ZnSnP2 compound were determined using the first principles calculations. We applied the full-potential enhanced plane wave method (FP-LAPW) within the framework of density functional theory (DFT) as implemented in the Wien2k package. The exchange-correlation potential term was treated using the local density approximation (LDA), the generalized gradient approximation (GGA), the Engel–Vosko generalized gradient approximation (EV–GGA) and GGA plus modified Becke– Johnson (mBJ). The lattice parameters of the ZnSnP2 obtained by minimizing the total energy are consistent well with the existing theoretical and experimental results. The Dugdale and MacDonald Grüneisen parameter was found to be 1.43 from the GGA and 1.44 from the LDA, respectively. According to the electronic properties, the band structure analysis of ZnSnP2 shows that it has a direct band gap in the (Γ-Γ) direction with a value of 1.43 eV. We have investigated the optical properties of ZnSnP2 semiconducting compound. The data of the dielectric functions shown that the peaks are positioned at around 2.41, 3.21, 3.83 and 4.09 eV, respectively.\",\"PeriodicalId\":31012,\"journal\":{\"name\":\"Annals of West University of Timisoara Physics\",\"volume\":\"1993 1\",\"pages\":\"82 - 94\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of West University of Timisoara Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/awutp-2022-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of West University of Timisoara Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/awutp-2022-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
利用第一性原理计算确定了ZnSnP2化合物的结构、电子和光学性质。我们在密度泛函理论(DFT)框架内应用了Wien2k软件包中实现的全势增强平面波方法(FP-LAPW)。采用局部密度近似(LDA)、广义梯度近似(GGA)、Engel-Vosko广义梯度近似(EV-GGA)和GGA加修正Becke - Johnson (mBJ)处理交换相关势项。通过最小化总能量得到的ZnSnP2晶格参数与已有的理论和实验结果吻合较好。GGA的Dugdale和MacDonald grisen参数分别为1.43和1.44。根据电子性质,对ZnSnP2的能带结构分析表明,ZnSnP2在(Γ-Γ)方向上具有直接带隙,带隙值为1.43 eV。我们研究了ZnSnP2半导体化合物的光学性质。介电函数数据表明,峰值分别位于2.41、3.21、3.83和4.09 eV附近。
Theoretical Investigation of Structural, Electronic, and Optical Properties of ZnSnP2 Semiconductor
Abstract The structural, electronic, and optical properties of ZnSnP2 compound were determined using the first principles calculations. We applied the full-potential enhanced plane wave method (FP-LAPW) within the framework of density functional theory (DFT) as implemented in the Wien2k package. The exchange-correlation potential term was treated using the local density approximation (LDA), the generalized gradient approximation (GGA), the Engel–Vosko generalized gradient approximation (EV–GGA) and GGA plus modified Becke– Johnson (mBJ). The lattice parameters of the ZnSnP2 obtained by minimizing the total energy are consistent well with the existing theoretical and experimental results. The Dugdale and MacDonald Grüneisen parameter was found to be 1.43 from the GGA and 1.44 from the LDA, respectively. According to the electronic properties, the band structure analysis of ZnSnP2 shows that it has a direct band gap in the (Γ-Γ) direction with a value of 1.43 eV. We have investigated the optical properties of ZnSnP2 semiconducting compound. The data of the dielectric functions shown that the peaks are positioned at around 2.41, 3.21, 3.83 and 4.09 eV, respectively.