保证微孔微浮雕表面摩擦副使用性能的技术

IF 1.7 0 ENGINEERING, PETROLEUM
K. Bashmur, V. Tynchenko, R. B. Sergienko, V. Kukartsev, S. Kurashkin, V. Tynchenko
{"title":"保证微孔微浮雕表面摩擦副使用性能的技术","authors":"K. Bashmur, V. Tynchenko, R. B. Sergienko, V. Kukartsev, S. Kurashkin, V. Tynchenko","doi":"10.5510/ogp20220400791","DOIUrl":null,"url":null,"abstract":"Article focuses on the improvement of the technologies used to improve the durability of friction pair components. The authors use the piston compressor to study cellular microrelief surfaces of cylindrical components. The cells are shaped as elliptic paraboloid with uneven positive parameters. The use of cellular microrelief surfaces is highly preferred as they reduce the attrition wear of the friction pairs through assuring the hydrodynamic load capacity of the lubrication layer with the shape of the microrelief. The research goals included the parametric analysis of the lubrication layer behavior in the gap between the microrelief cells. To do this, the authors developed an analytical model based on the theory of hydrodynamic lubrication and constructed a CFD model using the ANSYS Fluent software. To contain the transfer equations, the authors used the turbulence model SST k–ω. Both models showed that the maximum hydrodynamic load capacity coincided with the 75%-length of the major axis of the elliptic cell, which also corresponds to 0.128 mm in cell depth. The maximum lifting hydrodynamic pressure on one microrelief cell amounted to 3 kPa. Based on the results of the parametric analysis, the authors claim that the cellular microrelief can be efficiently used to assure the service properties of friction pairs in process units. Keywords: friction pair; cylinder sleeve; piston ring; cellular microrelief; hydrodynamic model; mathematical model; ANSYS Fluent; two-dimensional parametric analysis.","PeriodicalId":43516,"journal":{"name":"SOCAR Proceedings","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technologies assuring the service properties of friction pairs with cellular microrelief surfaces\",\"authors\":\"K. Bashmur, V. Tynchenko, R. B. Sergienko, V. Kukartsev, S. Kurashkin, V. Tynchenko\",\"doi\":\"10.5510/ogp20220400791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Article focuses on the improvement of the technologies used to improve the durability of friction pair components. The authors use the piston compressor to study cellular microrelief surfaces of cylindrical components. The cells are shaped as elliptic paraboloid with uneven positive parameters. The use of cellular microrelief surfaces is highly preferred as they reduce the attrition wear of the friction pairs through assuring the hydrodynamic load capacity of the lubrication layer with the shape of the microrelief. The research goals included the parametric analysis of the lubrication layer behavior in the gap between the microrelief cells. To do this, the authors developed an analytical model based on the theory of hydrodynamic lubrication and constructed a CFD model using the ANSYS Fluent software. To contain the transfer equations, the authors used the turbulence model SST k–ω. Both models showed that the maximum hydrodynamic load capacity coincided with the 75%-length of the major axis of the elliptic cell, which also corresponds to 0.128 mm in cell depth. The maximum lifting hydrodynamic pressure on one microrelief cell amounted to 3 kPa. Based on the results of the parametric analysis, the authors claim that the cellular microrelief can be efficiently used to assure the service properties of friction pairs in process units. Keywords: friction pair; cylinder sleeve; piston ring; cellular microrelief; hydrodynamic model; mathematical model; ANSYS Fluent; two-dimensional parametric analysis.\",\"PeriodicalId\":43516,\"journal\":{\"name\":\"SOCAR Proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SOCAR Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5510/ogp20220400791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SOCAR Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5510/ogp20220400791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 0

摘要

文章重点介绍了提高摩擦副部件耐久性的技术改进。利用活塞式压缩机对圆柱构件的微凸面进行了研究。细胞呈椭圆抛物面形,正参数不均匀。蜂窝微浮雕表面的使用是非常可取的,因为它们通过保证具有微浮雕形状的润滑层的水动力载荷能力来减少摩擦副的摩擦磨损。研究目标包括对微缓动单元间隙中润滑层行为的参数化分析。为此,作者基于流体动力润滑理论建立了解析模型,并利用ANSYS Fluent软件构建了CFD模型。为了包含传递方程,作者使用了湍流模型SST k -ω。两种模型均表明,最大水动力载荷能力与椭圆池长轴长度为75%时一致,对应池深为0.128 mm。一个微泄压池的最大提升动水压力为3 kPa。基于参数分析的结果,作者认为单元微位移可以有效地用于保证过程单元摩擦副的使用性能。关键词:摩擦副;汽缸套;活塞环;细胞微地貌;水动力模型;数学模型;ANSYS流利;二维参数分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Technologies assuring the service properties of friction pairs with cellular microrelief surfaces
Article focuses on the improvement of the technologies used to improve the durability of friction pair components. The authors use the piston compressor to study cellular microrelief surfaces of cylindrical components. The cells are shaped as elliptic paraboloid with uneven positive parameters. The use of cellular microrelief surfaces is highly preferred as they reduce the attrition wear of the friction pairs through assuring the hydrodynamic load capacity of the lubrication layer with the shape of the microrelief. The research goals included the parametric analysis of the lubrication layer behavior in the gap between the microrelief cells. To do this, the authors developed an analytical model based on the theory of hydrodynamic lubrication and constructed a CFD model using the ANSYS Fluent software. To contain the transfer equations, the authors used the turbulence model SST k–ω. Both models showed that the maximum hydrodynamic load capacity coincided with the 75%-length of the major axis of the elliptic cell, which also corresponds to 0.128 mm in cell depth. The maximum lifting hydrodynamic pressure on one microrelief cell amounted to 3 kPa. Based on the results of the parametric analysis, the authors claim that the cellular microrelief can be efficiently used to assure the service properties of friction pairs in process units. Keywords: friction pair; cylinder sleeve; piston ring; cellular microrelief; hydrodynamic model; mathematical model; ANSYS Fluent; two-dimensional parametric analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SOCAR Proceedings
SOCAR Proceedings ENGINEERING, PETROLEUM-
CiteScore
3.00
自引率
82.40%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信