在几乎伪循环里奇对称流形上

Q4 Mathematics
A. Shaikh, Ananta Patra
{"title":"在几乎伪循环里奇对称流形上","authors":"A. Shaikh, Ananta Patra","doi":"10.55937/sut/1312473184","DOIUrl":null,"url":null,"abstract":"The object of the present paper is to introduce a type of non-flat Riemannian manifolds called almost pseudo cyclic Ricci symmetric manifold and study its geometric properties. Among others it is shown that an almost pseudo cyclic Ricci symmetric manifold is a special type of quasi-Einstein manifold. We also study conformally flat almost pseudo cyclic Ricci symmetric manifolds and prove that such a manifold is isometrically immersed in an Euclidean manifold as a hypersurface. The existence of such notion is ensured by a non-trivial example. AMS 2010 Mathematics Subject Classification. 53B30, 53B50, 53C15, 53C25.","PeriodicalId":38708,"journal":{"name":"SUT Journal of Mathematics","volume":"85 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On almost pseudo cyclic Ricci symmetric manifolds\",\"authors\":\"A. Shaikh, Ananta Patra\",\"doi\":\"10.55937/sut/1312473184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The object of the present paper is to introduce a type of non-flat Riemannian manifolds called almost pseudo cyclic Ricci symmetric manifold and study its geometric properties. Among others it is shown that an almost pseudo cyclic Ricci symmetric manifold is a special type of quasi-Einstein manifold. We also study conformally flat almost pseudo cyclic Ricci symmetric manifolds and prove that such a manifold is isometrically immersed in an Euclidean manifold as a hypersurface. The existence of such notion is ensured by a non-trivial example. AMS 2010 Mathematics Subject Classification. 53B30, 53B50, 53C15, 53C25.\",\"PeriodicalId\":38708,\"journal\":{\"name\":\"SUT Journal of Mathematics\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SUT Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55937/sut/1312473184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SUT Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55937/sut/1312473184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

本文的目的是引入一类非平坦黎曼流形——几乎伪循环里奇对称流形,并研究其几何性质。其中证明了几乎伪循环里奇对称流形是一类特殊类型的拟爱因斯坦流形。我们还研究了共形平坦几乎伪循环里奇对称流形,并证明了这种流形作为超曲面等距地浸入欧几里得流形中。这个概念的存在是由一个重要的例子来证明的。AMS 2010数学学科分类。53B30, 53B50, 53C15, 53C25。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On almost pseudo cyclic Ricci symmetric manifolds
The object of the present paper is to introduce a type of non-flat Riemannian manifolds called almost pseudo cyclic Ricci symmetric manifold and study its geometric properties. Among others it is shown that an almost pseudo cyclic Ricci symmetric manifold is a special type of quasi-Einstein manifold. We also study conformally flat almost pseudo cyclic Ricci symmetric manifolds and prove that such a manifold is isometrically immersed in an Euclidean manifold as a hypersurface. The existence of such notion is ensured by a non-trivial example. AMS 2010 Mathematics Subject Classification. 53B30, 53B50, 53C15, 53C25.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SUT Journal of Mathematics
SUT Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信