{"title":"电流体动力离子拖微泵的设计、制造和测试","authors":"J. Darabi, M. Rada, M. Ohadi, J. Lawler","doi":"10.1109/JMEMS.2002.805046","DOIUrl":null,"url":null,"abstract":"This paper presents the design, fabrication, and testing of a novel electrohydrodynamic (EHD) ion-drag micropump. In order to maximize the electrical field gradients that are responsible for EHD pumping, we incorporated three-dimensional (3-D) triangular bumps of solder as part of the EHD electrodes. To form these bumps, Niobium was sputter-deposited onto a ceramic substrate, coated with photoresist, optically exposed and etched using a reactive ion etcher to define the electrode pattern. The substrate was then \"dipped\" into a molten solder pool. Since the solder adheres only to the metallic film, bumps of solder form on the electrodes, giving the electrodes a significant 3-D character. The overall dimensions of the micropump are 19 mm /spl times/ 32 mm /spl times/ 1.05 mm. Four different designs were fabricated and tested. Static pressure tests were performed with a 3M Thermal Fluid (HFE-7100) as the working fluid and the optimum design was identified. The results with the thermal fluid were highly promising and indicated a pumping head of up to 700 Pa at an applied voltage of 300 V. The experimental results for the four different designs show that the presence of the 3-D bump structures significantly improves the pumping performance. Also, a much better pumping performance was obtained with the micropump in which the emitter had a saw-tooth shape.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":"85 1","pages":"684-690"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Design, fabrication, and testing of an electrohydrodynamic ion-drag micropump\",\"authors\":\"J. Darabi, M. Rada, M. Ohadi, J. Lawler\",\"doi\":\"10.1109/JMEMS.2002.805046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design, fabrication, and testing of a novel electrohydrodynamic (EHD) ion-drag micropump. In order to maximize the electrical field gradients that are responsible for EHD pumping, we incorporated three-dimensional (3-D) triangular bumps of solder as part of the EHD electrodes. To form these bumps, Niobium was sputter-deposited onto a ceramic substrate, coated with photoresist, optically exposed and etched using a reactive ion etcher to define the electrode pattern. The substrate was then \\\"dipped\\\" into a molten solder pool. Since the solder adheres only to the metallic film, bumps of solder form on the electrodes, giving the electrodes a significant 3-D character. The overall dimensions of the micropump are 19 mm /spl times/ 32 mm /spl times/ 1.05 mm. Four different designs were fabricated and tested. Static pressure tests were performed with a 3M Thermal Fluid (HFE-7100) as the working fluid and the optimum design was identified. The results with the thermal fluid were highly promising and indicated a pumping head of up to 700 Pa at an applied voltage of 300 V. The experimental results for the four different designs show that the presence of the 3-D bump structures significantly improves the pumping performance. Also, a much better pumping performance was obtained with the micropump in which the emitter had a saw-tooth shape.\",\"PeriodicalId\":13438,\"journal\":{\"name\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"volume\":\"85 1\",\"pages\":\"684-690\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JMEMS.2002.805046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE\\/ASME Journal of Microelectromechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JMEMS.2002.805046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design, fabrication, and testing of an electrohydrodynamic ion-drag micropump
This paper presents the design, fabrication, and testing of a novel electrohydrodynamic (EHD) ion-drag micropump. In order to maximize the electrical field gradients that are responsible for EHD pumping, we incorporated three-dimensional (3-D) triangular bumps of solder as part of the EHD electrodes. To form these bumps, Niobium was sputter-deposited onto a ceramic substrate, coated with photoresist, optically exposed and etched using a reactive ion etcher to define the electrode pattern. The substrate was then "dipped" into a molten solder pool. Since the solder adheres only to the metallic film, bumps of solder form on the electrodes, giving the electrodes a significant 3-D character. The overall dimensions of the micropump are 19 mm /spl times/ 32 mm /spl times/ 1.05 mm. Four different designs were fabricated and tested. Static pressure tests were performed with a 3M Thermal Fluid (HFE-7100) as the working fluid and the optimum design was identified. The results with the thermal fluid were highly promising and indicated a pumping head of up to 700 Pa at an applied voltage of 300 V. The experimental results for the four different designs show that the presence of the 3-D bump structures significantly improves the pumping performance. Also, a much better pumping performance was obtained with the micropump in which the emitter had a saw-tooth shape.