一种自适应亚线性时间块稀疏傅里叶变换

V. Cevher, M. Kapralov, J. Scarlett, A. Zandieh
{"title":"一种自适应亚线性时间块稀疏傅里叶变换","authors":"V. Cevher, M. Kapralov, J. Scarlett, A. Zandieh","doi":"10.1145/3055399.3055462","DOIUrl":null,"url":null,"abstract":"The problem of approximately computing the k dominant Fourier coefficients of a vector X quickly, and using few samples in time domain, is known as the Sparse Fourier Transform (sparse FFT) problem. A long line of work on the sparse FFT has resulted in algorithms with O(klognlog(n/k)) runtime [Hassanieh et al., STOC'12] and O(klogn) sample complexity [Indyk et al., FOCS'14]. This paper revisits the sparse FFT problem with the added twist that the sparse coefficients approximately obey a (k0,k1)-block sparse model. In this model, signal frequencies are clustered in k0 intervals with width k1 in Fourier space, and k= k0k1 is the total sparsity. Our main result is the first sparse FFT algorithm for (k0, k1)-block sparse signals with a sample complexity of O*(k0k1 + k0log(1+ k0)logn) at constant signal-to-noise ratios, and sublinear runtime. Our algorithm crucially uses adaptivity to achieve the improved sample complexity bound, and we provide a lower bound showing that this is essential in the Fourier setting: Any non-adaptive algorithm must use Ω(k0k1logn/k0k1) samples for the (k0,k1)-block sparse model, ruling out improvements over the vanilla sparsity assumption. Our main technical innovation for adaptivity is a new randomized energy-based importance sampling technique that may be of independent interest.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"An adaptive sublinear-time block sparse fourier transform\",\"authors\":\"V. Cevher, M. Kapralov, J. Scarlett, A. Zandieh\",\"doi\":\"10.1145/3055399.3055462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of approximately computing the k dominant Fourier coefficients of a vector X quickly, and using few samples in time domain, is known as the Sparse Fourier Transform (sparse FFT) problem. A long line of work on the sparse FFT has resulted in algorithms with O(klognlog(n/k)) runtime [Hassanieh et al., STOC'12] and O(klogn) sample complexity [Indyk et al., FOCS'14]. This paper revisits the sparse FFT problem with the added twist that the sparse coefficients approximately obey a (k0,k1)-block sparse model. In this model, signal frequencies are clustered in k0 intervals with width k1 in Fourier space, and k= k0k1 is the total sparsity. Our main result is the first sparse FFT algorithm for (k0, k1)-block sparse signals with a sample complexity of O*(k0k1 + k0log(1+ k0)logn) at constant signal-to-noise ratios, and sublinear runtime. Our algorithm crucially uses adaptivity to achieve the improved sample complexity bound, and we provide a lower bound showing that this is essential in the Fourier setting: Any non-adaptive algorithm must use Ω(k0k1logn/k0k1) samples for the (k0,k1)-block sparse model, ruling out improvements over the vanilla sparsity assumption. Our main technical innovation for adaptivity is a new randomized energy-based importance sampling technique that may be of independent interest.\",\"PeriodicalId\":20615,\"journal\":{\"name\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055399.3055462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

稀疏傅里叶变换(Sparse Fourier Transform,简称稀疏FFT)问题是在时域中使用少量样本,快速近似计算向量X的k个傅里叶优势系数的问题。对稀疏FFT的长期研究已经产生了O(kloglog (n/k))运行时间的算法[Hassanieh等人,STOC'12]和O(klogn)样本复杂度的算法[Indyk等人,FOCS'14]。本文重新研究了稀疏FFT问题,增加了稀疏系数近似服从(k0,k1)块稀疏模型的扭曲。在该模型中,信号频率在Fourier空间中以k0个宽度为k1的区间聚类,k= k0k1为总稀疏度。我们的主要成果是(k0, k1)块稀疏信号的第一个稀疏FFT算法,其样本复杂度为O*(k0k1 + k0log(1+ k0)logn),信噪比恒定,运行时间为亚线性。我们的算法至关重要地使用自适应性来实现改进的样本复杂性界限,并且我们提供了一个下界,表明这在傅立叶设置中是必不可少的:任何非自适应算法必须使用Ω(k0k1logn/k0k1)样本用于(k0,k1)块稀疏模型,排除了香草稀疏性假设的改进。我们在适应性方面的主要技术创新是一种新的基于随机能量的重要抽样技术,这可能是一个独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive sublinear-time block sparse fourier transform
The problem of approximately computing the k dominant Fourier coefficients of a vector X quickly, and using few samples in time domain, is known as the Sparse Fourier Transform (sparse FFT) problem. A long line of work on the sparse FFT has resulted in algorithms with O(klognlog(n/k)) runtime [Hassanieh et al., STOC'12] and O(klogn) sample complexity [Indyk et al., FOCS'14]. This paper revisits the sparse FFT problem with the added twist that the sparse coefficients approximately obey a (k0,k1)-block sparse model. In this model, signal frequencies are clustered in k0 intervals with width k1 in Fourier space, and k= k0k1 is the total sparsity. Our main result is the first sparse FFT algorithm for (k0, k1)-block sparse signals with a sample complexity of O*(k0k1 + k0log(1+ k0)logn) at constant signal-to-noise ratios, and sublinear runtime. Our algorithm crucially uses adaptivity to achieve the improved sample complexity bound, and we provide a lower bound showing that this is essential in the Fourier setting: Any non-adaptive algorithm must use Ω(k0k1logn/k0k1) samples for the (k0,k1)-block sparse model, ruling out improvements over the vanilla sparsity assumption. Our main technical innovation for adaptivity is a new randomized energy-based importance sampling technique that may be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信