基于DFT的溶剂对四噻吩(TTF)分子电子和热力学性质影响的理论研究

R. Muhammad, N. M. Mahraz, A. Gidado, A. Musa
{"title":"基于DFT的溶剂对四噻吩(TTF)分子电子和热力学性质影响的理论研究","authors":"R. Muhammad, N. M. Mahraz, A. Gidado, A. Musa","doi":"10.9734/ajr2p/2021/v5i230162","DOIUrl":null,"url":null,"abstract":"Tetrathiafulvalene () is an organosulfur compound used in the production of molecular devices such as switches, sensors, nonlinear optical devices and rectifiers. In this work, a theoretical study on the effects of solvent on TTF molecule was investigated and reported based on Density Functional Theory (DFT) as implemented in Gaussian 03 package using B3LYP/6-31++G(d,p) basis set. Different solvents were introduced as a bridge to investigate their effects on the electronic structure. The HUMO, LUMO, energy gap, global chemical index, thermodynamic properties, NLO and DOS analysis of the TTF molecule in order to determine the reactivity and stability of the molecule were obtained. The results obtained showed that the solvents have effects on the electronic and non-linear-optical properties of the molecule. The optimized bond length revealed that the molecule has strong bond in gas phase with smallest bond length of about 1.0834Å than in the rest of the solvents. It was observed that the molecule is more stable in acetonitrile with HOMO-LUMO gap and chemical hardness of 3.6373eV and 1.8187eV respectively. This indicates that the energy gap and chemical hardness of TTF molecule increases with the increase in polarity and dielectric constant of the solvents. The computed results agreed with the results in the literature. The thermodynamics and NLO properties calculation also indicated that TTF molecule has highest value of specific heat capacity (Cv), total dipole moment () and first order hyperpolarizability () in acetonitrile, while acetone has the highest value of entropy and toluene has a slightly higher value of zero point vibrational energy (ZPVE) than the rest of the solvents. The results show that careful selection of the solvents and basis sets can tune the frontier molecular orbital energy gap of the molecule and can be used for molecular device applications.","PeriodicalId":8529,"journal":{"name":"Asian Journal of Research and Reviews in Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Theoretical Study of Solvent Effects on the Electronic and Thermodynamic Properties of Tetrathiafulvalene (TTF) Molecule Based on DFT\",\"authors\":\"R. Muhammad, N. M. Mahraz, A. Gidado, A. Musa\",\"doi\":\"10.9734/ajr2p/2021/v5i230162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tetrathiafulvalene () is an organosulfur compound used in the production of molecular devices such as switches, sensors, nonlinear optical devices and rectifiers. In this work, a theoretical study on the effects of solvent on TTF molecule was investigated and reported based on Density Functional Theory (DFT) as implemented in Gaussian 03 package using B3LYP/6-31++G(d,p) basis set. Different solvents were introduced as a bridge to investigate their effects on the electronic structure. The HUMO, LUMO, energy gap, global chemical index, thermodynamic properties, NLO and DOS analysis of the TTF molecule in order to determine the reactivity and stability of the molecule were obtained. The results obtained showed that the solvents have effects on the electronic and non-linear-optical properties of the molecule. The optimized bond length revealed that the molecule has strong bond in gas phase with smallest bond length of about 1.0834Å than in the rest of the solvents. It was observed that the molecule is more stable in acetonitrile with HOMO-LUMO gap and chemical hardness of 3.6373eV and 1.8187eV respectively. This indicates that the energy gap and chemical hardness of TTF molecule increases with the increase in polarity and dielectric constant of the solvents. The computed results agreed with the results in the literature. The thermodynamics and NLO properties calculation also indicated that TTF molecule has highest value of specific heat capacity (Cv), total dipole moment () and first order hyperpolarizability () in acetonitrile, while acetone has the highest value of entropy and toluene has a slightly higher value of zero point vibrational energy (ZPVE) than the rest of the solvents. The results show that careful selection of the solvents and basis sets can tune the frontier molecular orbital energy gap of the molecule and can be used for molecular device applications.\",\"PeriodicalId\":8529,\"journal\":{\"name\":\"Asian Journal of Research and Reviews in Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Research and Reviews in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/ajr2p/2021/v5i230162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Research and Reviews in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/ajr2p/2021/v5i230162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

四thiafulvalene()是一种有机硫化合物,用于生产分子器件,如开关、传感器、非线性光学器件和整流器。本文采用B3LYP/6-31++G(d,p)基集,基于密度泛函理论(DFT),研究了溶剂对TTF分子的影响。引入了不同的溶剂作为桥梁,研究了它们对电子结构的影响。获得了TTF分子的HUMO、LUMO、能隙、总化学指数、热力学性质、NLO和DOS分析,以确定分子的反应性和稳定性。结果表明,溶剂对分子的电子性质和非线性光学性质都有影响。优化后的键长表明,该分子在气相中键长较强,在其他溶剂中键长最小,约为1.0834Å。结果表明,该分子在乙腈中更稳定,具有HOMO-LUMO间隙,化学硬度分别为3.6373eV和1.8187eV。这表明TTF分子的能隙和化学硬度随着溶剂极性和介电常数的增大而增大。计算结果与文献结果一致。热力学和NLO性质计算也表明,TTF分子在乙腈中具有最高的比热容(Cv)、总偶极矩()和一阶超极化率(),而丙酮的熵值最高,甲苯的零点振动能(ZPVE)略高于其他溶剂。结果表明,精心选择溶剂和基组可以调节分子的前沿分子轨道能隙,并可用于分子器件应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical Study of Solvent Effects on the Electronic and Thermodynamic Properties of Tetrathiafulvalene (TTF) Molecule Based on DFT
Tetrathiafulvalene () is an organosulfur compound used in the production of molecular devices such as switches, sensors, nonlinear optical devices and rectifiers. In this work, a theoretical study on the effects of solvent on TTF molecule was investigated and reported based on Density Functional Theory (DFT) as implemented in Gaussian 03 package using B3LYP/6-31++G(d,p) basis set. Different solvents were introduced as a bridge to investigate their effects on the electronic structure. The HUMO, LUMO, energy gap, global chemical index, thermodynamic properties, NLO and DOS analysis of the TTF molecule in order to determine the reactivity and stability of the molecule were obtained. The results obtained showed that the solvents have effects on the electronic and non-linear-optical properties of the molecule. The optimized bond length revealed that the molecule has strong bond in gas phase with smallest bond length of about 1.0834Å than in the rest of the solvents. It was observed that the molecule is more stable in acetonitrile with HOMO-LUMO gap and chemical hardness of 3.6373eV and 1.8187eV respectively. This indicates that the energy gap and chemical hardness of TTF molecule increases with the increase in polarity and dielectric constant of the solvents. The computed results agreed with the results in the literature. The thermodynamics and NLO properties calculation also indicated that TTF molecule has highest value of specific heat capacity (Cv), total dipole moment () and first order hyperpolarizability () in acetonitrile, while acetone has the highest value of entropy and toluene has a slightly higher value of zero point vibrational energy (ZPVE) than the rest of the solvents. The results show that careful selection of the solvents and basis sets can tune the frontier molecular orbital energy gap of the molecule and can be used for molecular device applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信