二面体权1形式的Hecke代数的推导

Pub Date : 2022-07-04 DOI:10.1307/mmj/20217221
M. Harris, V. Rotger, Akshay Venkatesh
{"title":"二面体权1形式的Hecke代数的推导","authors":"M. Harris, V. Rotger, Akshay Venkatesh","doi":"10.1307/mmj/20217221","DOIUrl":null,"url":null,"abstract":"We study the action of the derived Hecke algebra in the setting of dihedral weight one forms and prove a conjecture of the secondand fourthnamed authors relating this action to certain Stark units associated to the symmetric square L-function. The proof exploits the theta correspondence between various Hecke modules as well as the ideas of Merel and Lecouturier on higher Eisenstein elements.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"The Derived Hecke Algebra for Dihedral Weight One Forms\",\"authors\":\"M. Harris, V. Rotger, Akshay Venkatesh\",\"doi\":\"10.1307/mmj/20217221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the action of the derived Hecke algebra in the setting of dihedral weight one forms and prove a conjecture of the secondand fourthnamed authors relating this action to certain Stark units associated to the symmetric square L-function. The proof exploits the theta correspondence between various Hecke modules as well as the ideas of Merel and Lecouturier on higher Eisenstein elements.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20217221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20217221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们研究了在二面体权一形式下所导出的Hecke代数的作用,并证明了第二及第四作者关于这种作用与对称方形l函数相关的某些Stark单位的一个猜想。该证明利用了赫克各模之间的θ对应关系以及Merel和Lecouturier关于更高爱森斯坦元素的想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Derived Hecke Algebra for Dihedral Weight One Forms
We study the action of the derived Hecke algebra in the setting of dihedral weight one forms and prove a conjecture of the secondand fourthnamed authors relating this action to certain Stark units associated to the symmetric square L-function. The proof exploits the theta correspondence between various Hecke modules as well as the ideas of Merel and Lecouturier on higher Eisenstein elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信