{"title":"零序列的次元集和插值集","authors":"Anh N. Le","doi":"10.3934/dcds.2021175","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>A set <inline-formula><tex-math id=\"M1\">\\begin{document}$ E \\subset \\mathbb{N} $\\end{document}</tex-math></inline-formula> is an interpolation set for nilsequences if every bounded function on <inline-formula><tex-math id=\"M2\">\\begin{document}$ E $\\end{document}</tex-math></inline-formula> can be extended to a nilsequence on <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\mathbb{N} $\\end{document}</tex-math></inline-formula>. Following a theorem of Strzelecki, every lacunary set is an interpolation set for nilsequences. We show that sublacunary sets are not interpolation sets for nilsequences. Here <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\{r_n: n \\in \\mathbb{N}\\} \\subset \\mathbb{N} $\\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\"M5\">\\begin{document}$ r_1 < r_2 < \\ldots $\\end{document}</tex-math></inline-formula> is <i>sublacunary</i> if <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\lim_{n \\to \\infty} (\\log r_n)/n = 0 $\\end{document}</tex-math></inline-formula>. Furthermore, we prove that the union of an interpolation set for nilsequences and a finite set is an interpolation set for nilsequences. Lastly, we provide a new class of interpolation sets for Bohr almost periodic sequences, and as a result, obtain a new example of interpolation set for <inline-formula><tex-math id=\"M7\">\\begin{document}$ 2 $\\end{document}</tex-math></inline-formula>-step nilsequences which is not an interpolation set for Bohr almost periodic sequences.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sublacunary sets and interpolation sets for nilsequences\",\"authors\":\"Anh N. Le\",\"doi\":\"10.3934/dcds.2021175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>A set <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ E \\\\subset \\\\mathbb{N} $\\\\end{document}</tex-math></inline-formula> is an interpolation set for nilsequences if every bounded function on <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ E $\\\\end{document}</tex-math></inline-formula> can be extended to a nilsequence on <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\mathbb{N} $\\\\end{document}</tex-math></inline-formula>. Following a theorem of Strzelecki, every lacunary set is an interpolation set for nilsequences. We show that sublacunary sets are not interpolation sets for nilsequences. Here <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\{r_n: n \\\\in \\\\mathbb{N}\\\\} \\\\subset \\\\mathbb{N} $\\\\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ r_1 < r_2 < \\\\ldots $\\\\end{document}</tex-math></inline-formula> is <i>sublacunary</i> if <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ \\\\lim_{n \\\\to \\\\infty} (\\\\log r_n)/n = 0 $\\\\end{document}</tex-math></inline-formula>. Furthermore, we prove that the union of an interpolation set for nilsequences and a finite set is an interpolation set for nilsequences. Lastly, we provide a new class of interpolation sets for Bohr almost periodic sequences, and as a result, obtain a new example of interpolation set for <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ 2 $\\\\end{document}</tex-math></inline-formula>-step nilsequences which is not an interpolation set for Bohr almost periodic sequences.</p>\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2021175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2021175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
A set \begin{document}$ E \subset \mathbb{N} $\end{document} is an interpolation set for nilsequences if every bounded function on \begin{document}$ E $\end{document} can be extended to a nilsequence on \begin{document}$ \mathbb{N} $\end{document}. Following a theorem of Strzelecki, every lacunary set is an interpolation set for nilsequences. We show that sublacunary sets are not interpolation sets for nilsequences. Here \begin{document}$ \{r_n: n \in \mathbb{N}\} \subset \mathbb{N} $\end{document} with \begin{document}$ r_1 < r_2 < \ldots $\end{document} is sublacunary if \begin{document}$ \lim_{n \to \infty} (\log r_n)/n = 0 $\end{document}. Furthermore, we prove that the union of an interpolation set for nilsequences and a finite set is an interpolation set for nilsequences. Lastly, we provide a new class of interpolation sets for Bohr almost periodic sequences, and as a result, obtain a new example of interpolation set for \begin{document}$ 2 $\end{document}-step nilsequences which is not an interpolation set for Bohr almost periodic sequences.
Sublacunary sets and interpolation sets for nilsequences
A set \begin{document}$ E \subset \mathbb{N} $\end{document} is an interpolation set for nilsequences if every bounded function on \begin{document}$ E $\end{document} can be extended to a nilsequence on \begin{document}$ \mathbb{N} $\end{document}. Following a theorem of Strzelecki, every lacunary set is an interpolation set for nilsequences. We show that sublacunary sets are not interpolation sets for nilsequences. Here \begin{document}$ \{r_n: n \in \mathbb{N}\} \subset \mathbb{N} $\end{document} with \begin{document}$ r_1 < r_2 < \ldots $\end{document} is sublacunary if \begin{document}$ \lim_{n \to \infty} (\log r_n)/n = 0 $\end{document}. Furthermore, we prove that the union of an interpolation set for nilsequences and a finite set is an interpolation set for nilsequences. Lastly, we provide a new class of interpolation sets for Bohr almost periodic sequences, and as a result, obtain a new example of interpolation set for \begin{document}$ 2 $\end{document}-step nilsequences which is not an interpolation set for Bohr almost periodic sequences.