弱条件下Newton-Potra方法的扩展收敛性分析

Q4 Mathematics
I. Argyros, S. Shakhno, Yuriy Shunkin, H. Yarmola
{"title":"弱条件下Newton-Potra方法的扩展收敛性分析","authors":"I. Argyros, S. Shakhno, Yuriy Shunkin, H. Yarmola","doi":"10.4064/AM2406-7-2020","DOIUrl":null,"url":null,"abstract":". We study a nonlinear equation with a nondifferentiable part. The semi-local convergence of the Newton–Potra method is proved under weaker (than in earlier research) conditions on derivatives and divided dif-ferences of the first order. Weaker semi-local convergence criteria and tighter error estimations are obtained. Hence, the applicability of this method is extended too. These advantages are obtained under the same computational effort.","PeriodicalId":52313,"journal":{"name":"Applicationes Mathematicae","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended convergence analysis of the Newton–Potra method under weak conditions\",\"authors\":\"I. Argyros, S. Shakhno, Yuriy Shunkin, H. Yarmola\",\"doi\":\"10.4064/AM2406-7-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We study a nonlinear equation with a nondifferentiable part. The semi-local convergence of the Newton–Potra method is proved under weaker (than in earlier research) conditions on derivatives and divided dif-ferences of the first order. Weaker semi-local convergence criteria and tighter error estimations are obtained. Hence, the applicability of this method is extended too. These advantages are obtained under the same computational effort.\",\"PeriodicalId\":52313,\"journal\":{\"name\":\"Applicationes Mathematicae\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/AM2406-7-2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/AM2406-7-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

. 研究了一类非线性方程的不可微部分。在较弱的条件下证明了Newton-Potra方法在导数和一阶可分差条件下的半局部收敛性。得到了较弱的半局部收敛准则和较严格的误差估计。从而扩展了该方法的适用性。这些优点是在相同的计算量下获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended convergence analysis of the Newton–Potra method under weak conditions
. We study a nonlinear equation with a nondifferentiable part. The semi-local convergence of the Newton–Potra method is proved under weaker (than in earlier research) conditions on derivatives and divided dif-ferences of the first order. Weaker semi-local convergence criteria and tighter error estimations are obtained. Hence, the applicability of this method is extended too. These advantages are obtained under the same computational effort.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicationes Mathematicae
Applicationes Mathematicae Mathematics-Applied Mathematics
CiteScore
0.30
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信