{"title":"给定匹配数和修改后的第一个萨格勒布连接索引的树","authors":"Sadia Noureen, A. A. Bhatti","doi":"10.22052/IJMC.2021.242169.1554","DOIUrl":null,"url":null,"abstract":"The modified first Zagreb connection index ZC∗1 for a graph G is defined as ZC∗1 (G) = sum v∈V (G) dvτv , where dv is the degree of the vertex v and τv denotes the connection number of v (that is, the number of vertices at the distance 2 from the vertex v). Let Tn,α be the class of trees with order n and matching number α such that n > 2α−1. In this paper, we obtain the lower bounds on the modified first Zagreb connection index of trees belonging to the class Tn,α, for 2α − 1 < n < 3α + 2.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":"109 1","pages":"127-138"},"PeriodicalIF":1.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the trees with given matching number and the modified first Zagreb connection index\",\"authors\":\"Sadia Noureen, A. A. Bhatti\",\"doi\":\"10.22052/IJMC.2021.242169.1554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The modified first Zagreb connection index ZC∗1 for a graph G is defined as ZC∗1 (G) = sum v∈V (G) dvτv , where dv is the degree of the vertex v and τv denotes the connection number of v (that is, the number of vertices at the distance 2 from the vertex v). Let Tn,α be the class of trees with order n and matching number α such that n > 2α−1. In this paper, we obtain the lower bounds on the modified first Zagreb connection index of trees belonging to the class Tn,α, for 2α − 1 < n < 3α + 2.\",\"PeriodicalId\":14545,\"journal\":{\"name\":\"Iranian journal of mathematical chemistry\",\"volume\":\"109 1\",\"pages\":\"127-138\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian journal of mathematical chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/IJMC.2021.242169.1554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2021.242169.1554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
摘要
图G的修正的第一萨格勒布连接指标ZC∗1定义为ZC∗1 (G) = sum v∈v (G) dvτv,其中dv是顶点v的度,τv表示v的连接数(即距离顶点v在2处的顶点数)。设n,α为阶数为n且匹配数为α的树类,使得n > 2α−1。在本文中,我们得到了对于2α−1 < n < 3α + 2,属于Tn,α类树的修正第一Zagreb连接指数的下界。
On the trees with given matching number and the modified first Zagreb connection index
The modified first Zagreb connection index ZC∗1 for a graph G is defined as ZC∗1 (G) = sum v∈V (G) dvτv , where dv is the degree of the vertex v and τv denotes the connection number of v (that is, the number of vertices at the distance 2 from the vertex v). Let Tn,α be the class of trees with order n and matching number α such that n > 2α−1. In this paper, we obtain the lower bounds on the modified first Zagreb connection index of trees belonging to the class Tn,α, for 2α − 1 < n < 3α + 2.