一般仿射GARCH模型的期望效用理论

Q3 Mathematics
M. Escobar-Anel, Ben Spies, R. Zagst
{"title":"一般仿射GARCH模型的期望效用理论","authors":"M. Escobar-Anel, Ben Spies, R. Zagst","doi":"10.1080/1350486X.2022.2101010","DOIUrl":null,"url":null,"abstract":"ABSTRACT Expected utility theory has produced abundant analytical results in continuous-time finance, but with very little success for discrete-time models. Assuming the underlying asset price follows a general affine GARCH model which allows for non-Gaussian innovations, our work produces an approximate closed-form recursive representation for the optimal strategy under a constant relative risk aversion (CRRA) utility function. We provide conditions for optimality and demonstrate that the optimal wealth is also an affine GARCH. In particular, we fully develop the application to the IG-GARCH model hence accommodating negatively skewed and leptokurtic asset returns. Relying on two popular daily parametric estimations, our numerical analyses give a first window into the impact of the interaction of heteroscedasticity, skewness and kurtosis on optimal portfolio solutions. We find that losses arising from following Gaussian (suboptimal) strategies, or Merton's static solution, can be up to and 5%, respectively, assuming low-risk aversion of the investor and using a five-years time horizon.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"11 1","pages":"477 - 507"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Expected Utility Theory on General Affine GARCH Models\",\"authors\":\"M. Escobar-Anel, Ben Spies, R. Zagst\",\"doi\":\"10.1080/1350486X.2022.2101010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Expected utility theory has produced abundant analytical results in continuous-time finance, but with very little success for discrete-time models. Assuming the underlying asset price follows a general affine GARCH model which allows for non-Gaussian innovations, our work produces an approximate closed-form recursive representation for the optimal strategy under a constant relative risk aversion (CRRA) utility function. We provide conditions for optimality and demonstrate that the optimal wealth is also an affine GARCH. In particular, we fully develop the application to the IG-GARCH model hence accommodating negatively skewed and leptokurtic asset returns. Relying on two popular daily parametric estimations, our numerical analyses give a first window into the impact of the interaction of heteroscedasticity, skewness and kurtosis on optimal portfolio solutions. We find that losses arising from following Gaussian (suboptimal) strategies, or Merton's static solution, can be up to and 5%, respectively, assuming low-risk aversion of the investor and using a five-years time horizon.\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":\"11 1\",\"pages\":\"477 - 507\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486X.2022.2101010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2022.2101010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

期望效用理论在连续时间金融中产生了丰富的分析结果,但在离散时间模型中却很少成功。假设标的资产价格遵循允许非高斯创新的一般仿射GARCH模型,我们的工作为恒定相对风险厌恶(CRRA)效用函数下的最优策略产生了近似的封闭递归表示。我们提供了最优性的条件,并证明了最优财富也是仿射GARCH。特别是,我们充分开发了IG-GARCH模型的应用,从而适应负偏斜和细峰资产回报。依靠两种流行的每日参数估计,我们的数值分析为异方差、偏度和峰度的相互作用对最优投资组合解决方案的影响提供了第一个窗口。我们发现,假设投资者厌恶低风险并使用五年的时间范围,遵循高斯(次优)策略或默顿静态解决方案所产生的损失分别高达5%和5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expected Utility Theory on General Affine GARCH Models
ABSTRACT Expected utility theory has produced abundant analytical results in continuous-time finance, but with very little success for discrete-time models. Assuming the underlying asset price follows a general affine GARCH model which allows for non-Gaussian innovations, our work produces an approximate closed-form recursive representation for the optimal strategy under a constant relative risk aversion (CRRA) utility function. We provide conditions for optimality and demonstrate that the optimal wealth is also an affine GARCH. In particular, we fully develop the application to the IG-GARCH model hence accommodating negatively skewed and leptokurtic asset returns. Relying on two popular daily parametric estimations, our numerical analyses give a first window into the impact of the interaction of heteroscedasticity, skewness and kurtosis on optimal portfolio solutions. We find that losses arising from following Gaussian (suboptimal) strategies, or Merton's static solution, can be up to and 5%, respectively, assuming low-risk aversion of the investor and using a five-years time horizon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信