考虑计算机视觉提取先验信息的基于通用Tikhonov正则化的桥梁荷载估计

Yixian Li, Limin Sun, Y. Xia, Lanxin Luo, Ao Wang, Xudong Jian
{"title":"考虑计算机视觉提取先验信息的基于通用Tikhonov正则化的桥梁荷载估计","authors":"Yixian Li, Limin Sun, Y. Xia, Lanxin Luo, Ao Wang, Xudong Jian","doi":"10.1002/stc.3135","DOIUrl":null,"url":null,"abstract":"Estimating the load distribution of a bridge structure enables to evaluate the in‐service state and predict the structural responses. This paper develops an iterative strategy to inversely estimate the traffic load distribution of a bridge from limited measurements. The computer vision technologies, including the YOLO network‐based object detection and a pixel coordinate‐based positioning approach, are used to locate the vehicle positions on the bridge deck and form a prior information vector of the input positions. Then, a generalized Tikhonov regularization method is proposed to estimate the load distribution using the bridge response and prior information. The regularization parameter is determined by the L‐curve method. The fusion of computer vision and regularization can improve the load identification accuracy and reduce the overfitting effect. The developed approach is applied to numerical and experimental examples under various load conditions. The load can be accurately identified in all cases, and the full‐field responses of the structures can be reconstructed with minor errors.","PeriodicalId":22049,"journal":{"name":"Structural Control and Health Monitoring","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General Tikhonov regularization‐based load estimation of bridges considering the computer vision‐extracted prior information\",\"authors\":\"Yixian Li, Limin Sun, Y. Xia, Lanxin Luo, Ao Wang, Xudong Jian\",\"doi\":\"10.1002/stc.3135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the load distribution of a bridge structure enables to evaluate the in‐service state and predict the structural responses. This paper develops an iterative strategy to inversely estimate the traffic load distribution of a bridge from limited measurements. The computer vision technologies, including the YOLO network‐based object detection and a pixel coordinate‐based positioning approach, are used to locate the vehicle positions on the bridge deck and form a prior information vector of the input positions. Then, a generalized Tikhonov regularization method is proposed to estimate the load distribution using the bridge response and prior information. The regularization parameter is determined by the L‐curve method. The fusion of computer vision and regularization can improve the load identification accuracy and reduce the overfitting effect. The developed approach is applied to numerical and experimental examples under various load conditions. The load can be accurately identified in all cases, and the full‐field responses of the structures can be reconstructed with minor errors.\",\"PeriodicalId\":22049,\"journal\":{\"name\":\"Structural Control and Health Monitoring\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control and Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/stc.3135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control and Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/stc.3135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对桥梁结构的荷载分布进行估计,可以评估桥梁结构的使用状态并预测结构的响应。本文提出了一种从有限测量值反演桥梁交通荷载分布的迭代方法。计算机视觉技术,包括基于YOLO网络的目标检测和基于像素坐标的定位方法,用于定位桥面上的车辆位置,并形成输入位置的先验信息向量。然后,提出了一种基于桥梁响应和先验信息估计荷载分布的广义Tikhonov正则化方法。正则化参数由L曲线法确定。将计算机视觉与正则化相融合,可以提高载荷识别精度,减少过拟合效应。将该方法应用于各种载荷条件下的数值和实验算例。在所有情况下都可以准确地识别载荷,并且可以在很小的误差下重建结构的全场响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General Tikhonov regularization‐based load estimation of bridges considering the computer vision‐extracted prior information
Estimating the load distribution of a bridge structure enables to evaluate the in‐service state and predict the structural responses. This paper develops an iterative strategy to inversely estimate the traffic load distribution of a bridge from limited measurements. The computer vision technologies, including the YOLO network‐based object detection and a pixel coordinate‐based positioning approach, are used to locate the vehicle positions on the bridge deck and form a prior information vector of the input positions. Then, a generalized Tikhonov regularization method is proposed to estimate the load distribution using the bridge response and prior information. The regularization parameter is determined by the L‐curve method. The fusion of computer vision and regularization can improve the load identification accuracy and reduce the overfitting effect. The developed approach is applied to numerical and experimental examples under various load conditions. The load can be accurately identified in all cases, and the full‐field responses of the structures can be reconstructed with minor errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信