杨-拉普拉斯方程的推导

Q1 Physics and Astronomy
L. M. Siqveland, S. Skjaeveland
{"title":"杨-拉普拉斯方程的推导","authors":"L. M. Siqveland, S. Skjaeveland","doi":"10.46690/CAPI.2021.02.01","DOIUrl":null,"url":null,"abstract":"The classical Young-Laplace equation relates capillary pressure to surface tension and the principal radii of curvature of the interface between two immiscible fluids. In this paper the required properties of space curves and smooth surfaces are described by differential geometry and linear algebra. The equilibrium condition is formulated by a force balance and minimization of surface energy. Cited as:  Siqveland, L. M., Skjaeveland, S. M. Derivations of the Young-Laplace equation. Capillarity, 2021, 4(2): 23-30, doi: 10.46690/capi.2021.02.01","PeriodicalId":34047,"journal":{"name":"Capillarity","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Derivations of the Young-Laplace equation\",\"authors\":\"L. M. Siqveland, S. Skjaeveland\",\"doi\":\"10.46690/CAPI.2021.02.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classical Young-Laplace equation relates capillary pressure to surface tension and the principal radii of curvature of the interface between two immiscible fluids. In this paper the required properties of space curves and smooth surfaces are described by differential geometry and linear algebra. The equilibrium condition is formulated by a force balance and minimization of surface energy. Cited as:  Siqveland, L. M., Skjaeveland, S. M. Derivations of the Young-Laplace equation. Capillarity, 2021, 4(2): 23-30, doi: 10.46690/capi.2021.02.01\",\"PeriodicalId\":34047,\"journal\":{\"name\":\"Capillarity\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Capillarity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46690/CAPI.2021.02.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Capillarity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46690/CAPI.2021.02.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 13

摘要

经典的Young-Laplace方程将毛细管压力与表面张力和两种不混相流体界面的主曲率半径联系起来。本文用微分几何和线性代数描述了空间曲线和光滑曲面的必要性质。平衡条件由力平衡和表面能最小化表述。引自:Siqveland, L. M., Skjaeveland, S. M. Young-Laplace方程的推导。毛细管学,2021,4(2):23-30,doi: 10.46690/capi.2021.02.01
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derivations of the Young-Laplace equation
The classical Young-Laplace equation relates capillary pressure to surface tension and the principal radii of curvature of the interface between two immiscible fluids. In this paper the required properties of space curves and smooth surfaces are described by differential geometry and linear algebra. The equilibrium condition is formulated by a force balance and minimization of surface energy. Cited as:  Siqveland, L. M., Skjaeveland, S. M. Derivations of the Young-Laplace equation. Capillarity, 2021, 4(2): 23-30, doi: 10.46690/capi.2021.02.01
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Capillarity
Capillarity Physics and Astronomy-Surfaces and Interfaces
CiteScore
7.10
自引率
0.00%
发文量
15
审稿时长
2~3 weeks
期刊介绍: Capillarity publishes high-quality original research articles and current reviews on fundamental scientific principles and innovations of capillarity in physics, chemistry, biology, environmental science and related emerging fields. All advances in theoretical, numerical and experimental approaches to capillarity in capillary tube and interface dominated structure and system area are welcome. The following topics are within (but not limited to) the scope of capillarity: i) Capillary-driven phenomenon in natural/artificial tubes, porous and nanoporous materials ii) Fundamental mechanisms of capillarity aided by theory and experiments iii) Spontaneous imbibition, adsorption, wicking and related applications of capillarity in hydrocarbon production, chemical process and biological sciences iv) Static and dynamic interfacial processes, surfactants, wettability, film and colloids v) New approaches and technologies on capillarity Capillarity is a quarterly open access journal and free to read for all. The journal provides a communicate platform for researchers who are interested in all fields of capillary phenomenon.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信