风场变化对对流风暴结构和发展的敏感性研究

IF 1.5 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES
Wu Hai-ying, Zeng Ming-jian, Mei Haixia, Zhang Bing
{"title":"风场变化对对流风暴结构和发展的敏感性研究","authors":"Wu Hai-ying, Zeng Ming-jian, Mei Haixia, Zhang Bing","doi":"10.16555/J.1006-8775.2020.006","DOIUrl":null,"url":null,"abstract":"In order to study the impacts of wind field variations in the middle and lower troposphere on the development and structure of storms, we carried out numerical experiments on cases of severe convection in the Jianghuai area under the background of cold vortex on April 28, 2015. The results show that the structure and development of convective storms are highly sensitive to the changes of wind fields, and the adjustment of wind fields in the middle or lower troposphere will lead to significant changes in the development and structure of storms. When the wind field in the middle or lower troposphere is weakened, the development of convective storms attenuates to some extent compared with that in the control experiment, and the ways of attenuation in the two experiments are different. In the attenuation test of wind field at the middle level, convective storms obviously weaken at all stages in its development, while for the wind field at the low level, the convective storms weaken only in the initial stage of storm. On the contrary, the enhancement of the wind field in the middle or lower troposphere is conducive to the development of convection, especially the enhancement in the middle troposphere. In contrast, the convective storms develop rapidly in this test, as the most intensive one. The wind field variations have significant impacts on the structure and organization of the storm. The enhancement of wind field in the middle troposphere facilitates the intension of the middle-level rotation in convective storm, the reduction of the storm scale, and the organized evolution of convective storms. The strengthening of the wind field in the lower troposphere is conducive to the development of the low-level secondary circulation of the storm and the cyclonic vorticity at the middle and low levels on the inflowing side of the storms.","PeriodicalId":17432,"journal":{"name":"热带气象学报","volume":"1 1","pages":"57-70"},"PeriodicalIF":1.5000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"STUDY ON SENSITIVITY OF WIND FIELD VARIATION TO STRUCTURE AND DEVELOPMENT OF CONVECTIVE STORMS\",\"authors\":\"Wu Hai-ying, Zeng Ming-jian, Mei Haixia, Zhang Bing\",\"doi\":\"10.16555/J.1006-8775.2020.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to study the impacts of wind field variations in the middle and lower troposphere on the development and structure of storms, we carried out numerical experiments on cases of severe convection in the Jianghuai area under the background of cold vortex on April 28, 2015. The results show that the structure and development of convective storms are highly sensitive to the changes of wind fields, and the adjustment of wind fields in the middle or lower troposphere will lead to significant changes in the development and structure of storms. When the wind field in the middle or lower troposphere is weakened, the development of convective storms attenuates to some extent compared with that in the control experiment, and the ways of attenuation in the two experiments are different. In the attenuation test of wind field at the middle level, convective storms obviously weaken at all stages in its development, while for the wind field at the low level, the convective storms weaken only in the initial stage of storm. On the contrary, the enhancement of the wind field in the middle or lower troposphere is conducive to the development of convection, especially the enhancement in the middle troposphere. In contrast, the convective storms develop rapidly in this test, as the most intensive one. The wind field variations have significant impacts on the structure and organization of the storm. The enhancement of wind field in the middle troposphere facilitates the intension of the middle-level rotation in convective storm, the reduction of the storm scale, and the organized evolution of convective storms. The strengthening of the wind field in the lower troposphere is conducive to the development of the low-level secondary circulation of the storm and the cyclonic vorticity at the middle and low levels on the inflowing side of the storms.\",\"PeriodicalId\":17432,\"journal\":{\"name\":\"热带气象学报\",\"volume\":\"1 1\",\"pages\":\"57-70\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"热带气象学报\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.16555/J.1006-8775.2020.006\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"热带气象学报","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.16555/J.1006-8775.2020.006","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

为了研究对流层中下层风场变化对风暴发展和结构的影响,我们于2015年4月28日在冷涡背景下对江淮地区强对流进行了数值实验。结果表明:对流风暴的结构和发展对风场的变化高度敏感,对流层中下层风场的调整将导致风暴的发展和结构发生显著变化。当对流层中下层风场减弱时,对流风暴的发展与对照实验相比有一定程度的衰减,且衰减方式不同。在中层风场衰减试验中,对流风暴在其发展的各个阶段都明显减弱,而低层风场中,对流风暴仅在风暴的初始阶段减弱。相反,对流层中下层风场的增强有利于对流的发展,尤其是对流层中下层风场的增强。与此相反,本次试验中对流风暴发展迅速,强度最大。风场的变化对风暴的结构和组织有重要影响。对流层中层风场的增强有利于对流风暴中层旋转的增强,有利于风暴尺度的减小,有利于对流风暴的有组织演化。对流层低层风场的加强有利于风暴低层二次环流的发展和风暴流入侧中低层气旋涡度的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STUDY ON SENSITIVITY OF WIND FIELD VARIATION TO STRUCTURE AND DEVELOPMENT OF CONVECTIVE STORMS
In order to study the impacts of wind field variations in the middle and lower troposphere on the development and structure of storms, we carried out numerical experiments on cases of severe convection in the Jianghuai area under the background of cold vortex on April 28, 2015. The results show that the structure and development of convective storms are highly sensitive to the changes of wind fields, and the adjustment of wind fields in the middle or lower troposphere will lead to significant changes in the development and structure of storms. When the wind field in the middle or lower troposphere is weakened, the development of convective storms attenuates to some extent compared with that in the control experiment, and the ways of attenuation in the two experiments are different. In the attenuation test of wind field at the middle level, convective storms obviously weaken at all stages in its development, while for the wind field at the low level, the convective storms weaken only in the initial stage of storm. On the contrary, the enhancement of the wind field in the middle or lower troposphere is conducive to the development of convection, especially the enhancement in the middle troposphere. In contrast, the convective storms develop rapidly in this test, as the most intensive one. The wind field variations have significant impacts on the structure and organization of the storm. The enhancement of wind field in the middle troposphere facilitates the intension of the middle-level rotation in convective storm, the reduction of the storm scale, and the organized evolution of convective storms. The strengthening of the wind field in the lower troposphere is conducive to the development of the low-level secondary circulation of the storm and the cyclonic vorticity at the middle and low levels on the inflowing side of the storms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
热带气象学报
热带气象学报 METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
1.80
自引率
8.30%
发文量
2793
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信