直觉l -模糊β-覆盖粗糙集

IF 1.3 Q2 MATHEMATICS, APPLIED
YU Peng, Xiaogang An, Xiaohong Zhang
{"title":"直觉l -模糊β-覆盖粗糙集","authors":"YU Peng, Xiaogang An, Xiaohong Zhang","doi":"10.1080/16168658.2020.1778829","DOIUrl":null,"url":null,"abstract":"By introducing the concepts of intuitionistic L-fuzzy β-covering and intuitionistic L-fuzzy β-neighborhood, we define three kinds of intuitionistic L-fuzzy β-covering rough set models. The basic properties of those intuitionistic L-fuzzy β-covering rough set models are investigated. Moreover, we define the other three kinds of intuitionistic L-fuzzy β-covering rough set models by using the former three models. Finally, we present the matrix representations of the newly defined lower and upper approximation operators so that the calculation of lower and upper approximations of subsets can be converted into operations on matrices.","PeriodicalId":37623,"journal":{"name":"Fuzzy Information and Engineering","volume":"14 1","pages":"19 - 37"},"PeriodicalIF":1.3000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intuitionistic L-fuzzy β-covering Rough Set\",\"authors\":\"YU Peng, Xiaogang An, Xiaohong Zhang\",\"doi\":\"10.1080/16168658.2020.1778829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By introducing the concepts of intuitionistic L-fuzzy β-covering and intuitionistic L-fuzzy β-neighborhood, we define three kinds of intuitionistic L-fuzzy β-covering rough set models. The basic properties of those intuitionistic L-fuzzy β-covering rough set models are investigated. Moreover, we define the other three kinds of intuitionistic L-fuzzy β-covering rough set models by using the former three models. Finally, we present the matrix representations of the newly defined lower and upper approximation operators so that the calculation of lower and upper approximations of subsets can be converted into operations on matrices.\",\"PeriodicalId\":37623,\"journal\":{\"name\":\"Fuzzy Information and Engineering\",\"volume\":\"14 1\",\"pages\":\"19 - 37\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Information and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/16168658.2020.1778829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Information and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16168658.2020.1778829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

通过引入直觉L-fuzzy β-覆盖和直觉L-fuzzy β-邻域的概念,定义了三种直觉L-fuzzy β-覆盖粗糙集模型。研究了直觉l -模糊β-覆盖粗糙集模型的基本性质。在此基础上,我们定义了另外三种直觉l -模糊β-覆盖粗糙集模型。最后,我们给出了新定义的上下逼近算子的矩阵表示,使得子集上下逼近的计算可以转化为对矩阵的运算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intuitionistic L-fuzzy β-covering Rough Set
By introducing the concepts of intuitionistic L-fuzzy β-covering and intuitionistic L-fuzzy β-neighborhood, we define three kinds of intuitionistic L-fuzzy β-covering rough set models. The basic properties of those intuitionistic L-fuzzy β-covering rough set models are investigated. Moreover, we define the other three kinds of intuitionistic L-fuzzy β-covering rough set models by using the former three models. Finally, we present the matrix representations of the newly defined lower and upper approximation operators so that the calculation of lower and upper approximations of subsets can be converted into operations on matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
40 weeks
期刊介绍: Fuzzy Information and Engineering—An International Journal wants to provide a unified communication platform for researchers in a wide area of topics from pure and applied mathematics, computer science, engineering, and other related fields. While also accepting fundamental work, the journal focuses on applications. Research papers, short communications, and reviews are welcome. Technical topics within the scope include: (1) Fuzzy Information a. Fuzzy information theory and information systems b. Fuzzy clustering and classification c. Fuzzy information processing d. Hardware and software co-design e. Fuzzy computer f. Fuzzy database and data mining g. Fuzzy image processing and pattern recognition h. Fuzzy information granulation i. Knowledge acquisition and representation in fuzzy information (2) Fuzzy Sets and Systems a. Fuzzy sets b. Fuzzy analysis c. Fuzzy topology and fuzzy mapping d. Fuzzy equation e. Fuzzy programming and optimal f. Fuzzy probability and statistic g. Fuzzy logic and algebra h. General systems i. Fuzzy socioeconomic system j. Fuzzy decision support system k. Fuzzy expert system (3) Soft Computing a. Soft computing theory and foundation b. Nerve cell algorithms c. Genetic algorithms d. Fuzzy approximation algorithms e. Computing with words and Quantum computation (4) Fuzzy Engineering a. Fuzzy control b. Fuzzy system engineering c. Fuzzy knowledge engineering d. Fuzzy management engineering e. Fuzzy design f. Fuzzy industrial engineering g. Fuzzy system modeling (5) Fuzzy Operations Research [...] (6) Artificial Intelligence [...] (7) Others [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信