Isa Abdullahi Baba , Bashir Ahmad Nasidi , Dumitru Baleanu , Sultan Hamed Saadi
{"title":"一种优化COVID - 19可用控制措施的数学模型","authors":"Isa Abdullahi Baba , Bashir Ahmad Nasidi , Dumitru Baleanu , Sultan Hamed Saadi","doi":"10.1016/j.ecocom.2021.100930","DOIUrl":null,"url":null,"abstract":"<div><p>In the absence of valid medicine or vaccine for treating the pandemic Coronavirus (COVID-19) infection, other control strategies like; quarantine, social distancing, self- isolation, sanitation and use of personal protective equipment are effective tool used to prevent and curtail the spread of the disease. In this paper, we present a mathematical model to study the dynamics of COVID-19. We then formulate an optimal control problem with the aim to study the most effective control strategies to prevent the proliferation of the disease. The existence of an optimal control function is established and the Pontryagin maximum principle is applied for the characterization of the controller. The equilibrium solutions (DFE & endemic) are found to be locally asymptotically stable and subsequently the basic reproduction number is obtained. Numerical simulations are carried out to support the analytic results and to explicitly show the significance of the control. It is shown that Quarantine/isolating those infected with the disease is the best control measure at the moment.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ecocom.2021.100930","citationCount":"4","resultStr":"{\"title\":\"A mathematical model to optimize the available control measures of COVID – 19\",\"authors\":\"Isa Abdullahi Baba , Bashir Ahmad Nasidi , Dumitru Baleanu , Sultan Hamed Saadi\",\"doi\":\"10.1016/j.ecocom.2021.100930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the absence of valid medicine or vaccine for treating the pandemic Coronavirus (COVID-19) infection, other control strategies like; quarantine, social distancing, self- isolation, sanitation and use of personal protective equipment are effective tool used to prevent and curtail the spread of the disease. In this paper, we present a mathematical model to study the dynamics of COVID-19. We then formulate an optimal control problem with the aim to study the most effective control strategies to prevent the proliferation of the disease. The existence of an optimal control function is established and the Pontryagin maximum principle is applied for the characterization of the controller. The equilibrium solutions (DFE & endemic) are found to be locally asymptotically stable and subsequently the basic reproduction number is obtained. Numerical simulations are carried out to support the analytic results and to explicitly show the significance of the control. It is shown that Quarantine/isolating those infected with the disease is the best control measure at the moment.</p></div>\",\"PeriodicalId\":50559,\"journal\":{\"name\":\"Ecological Complexity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ecocom.2021.100930\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Complexity\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476945X21000234\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X21000234","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
A mathematical model to optimize the available control measures of COVID – 19
In the absence of valid medicine or vaccine for treating the pandemic Coronavirus (COVID-19) infection, other control strategies like; quarantine, social distancing, self- isolation, sanitation and use of personal protective equipment are effective tool used to prevent and curtail the spread of the disease. In this paper, we present a mathematical model to study the dynamics of COVID-19. We then formulate an optimal control problem with the aim to study the most effective control strategies to prevent the proliferation of the disease. The existence of an optimal control function is established and the Pontryagin maximum principle is applied for the characterization of the controller. The equilibrium solutions (DFE & endemic) are found to be locally asymptotically stable and subsequently the basic reproduction number is obtained. Numerical simulations are carried out to support the analytic results and to explicitly show the significance of the control. It is shown that Quarantine/isolating those infected with the disease is the best control measure at the moment.
期刊介绍:
Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales.
Ecological Complexity will publish research into the following areas:
• All aspects of biocomplexity in the environment and theoretical ecology
• Ecosystems and biospheres as complex adaptive systems
• Self-organization of spatially extended ecosystems
• Emergent properties and structures of complex ecosystems
• Ecological pattern formation in space and time
• The role of biophysical constraints and evolutionary attractors on species assemblages
• Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory
• Ecological topology and networks
• Studies towards an ecology of complex systems
• Complex systems approaches for the study of dynamic human-environment interactions
• Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change
• New tools and methods for studying ecological complexity