{"title":"B(H)的积分k算子框架","authors":"H. Labrigui, M. Rossafi, A. Touri, S. Kabbaj","doi":"10.52846/ami.v48i1.1385","DOIUrl":null,"url":null,"abstract":"In this paper, we will introduce a new notion, that of $K$-Integral operator frames in the set of all bounded linear operators noted $\\mathcal{B}(H)$, where $H$ is a separable Hilbert space. Also, we prove some results of integral $K$-operator frame. Lastly we will establish some new properties for the perturbation and stability for an integral $K$-operator frames for $\\mathcal{B}(H)$.","PeriodicalId":43654,"journal":{"name":"Annals of the University of Craiova-Mathematics and Computer Science Series","volume":"17 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral K-operator frames for B(H)\",\"authors\":\"H. Labrigui, M. Rossafi, A. Touri, S. Kabbaj\",\"doi\":\"10.52846/ami.v48i1.1385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we will introduce a new notion, that of $K$-Integral operator frames in the set of all bounded linear operators noted $\\\\mathcal{B}(H)$, where $H$ is a separable Hilbert space. Also, we prove some results of integral $K$-operator frame. Lastly we will establish some new properties for the perturbation and stability for an integral $K$-operator frames for $\\\\mathcal{B}(H)$.\",\"PeriodicalId\":43654,\"journal\":{\"name\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52846/ami.v48i1.1385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the University of Craiova-Mathematics and Computer Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52846/ami.v48i1.1385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we will introduce a new notion, that of $K$-Integral operator frames in the set of all bounded linear operators noted $\mathcal{B}(H)$, where $H$ is a separable Hilbert space. Also, we prove some results of integral $K$-operator frame. Lastly we will establish some new properties for the perturbation and stability for an integral $K$-operator frames for $\mathcal{B}(H)$.