B(H)的积分k算子框架

IF 0.5 Q3 MATHEMATICS
H. Labrigui, M. Rossafi, A. Touri, S. Kabbaj
{"title":"B(H)的积分k算子框架","authors":"H. Labrigui, M. Rossafi, A. Touri, S. Kabbaj","doi":"10.52846/ami.v48i1.1385","DOIUrl":null,"url":null,"abstract":"In this paper, we will introduce a new notion, that of $K$-Integral operator frames in the set of all bounded linear operators noted $\\mathcal{B}(H)$, where $H$ is a separable Hilbert space. Also, we prove some results of integral $K$-operator frame. Lastly we will establish some new properties for the perturbation and stability for an integral $K$-operator frames for $\\mathcal{B}(H)$.","PeriodicalId":43654,"journal":{"name":"Annals of the University of Craiova-Mathematics and Computer Science Series","volume":"17 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral K-operator frames for B(H)\",\"authors\":\"H. Labrigui, M. Rossafi, A. Touri, S. Kabbaj\",\"doi\":\"10.52846/ami.v48i1.1385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we will introduce a new notion, that of $K$-Integral operator frames in the set of all bounded linear operators noted $\\\\mathcal{B}(H)$, where $H$ is a separable Hilbert space. Also, we prove some results of integral $K$-operator frame. Lastly we will establish some new properties for the perturbation and stability for an integral $K$-operator frames for $\\\\mathcal{B}(H)$.\",\"PeriodicalId\":43654,\"journal\":{\"name\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52846/ami.v48i1.1385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the University of Craiova-Mathematics and Computer Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52846/ami.v48i1.1385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文将引入一个新的概念,即在所有有界线性算子集$\mathcal{B}(H)$中$K$-积分算子框架的概念,其中$H$是可分离的希尔伯特空间。同时,我们也证明了积分K算子框架的一些结果。最后,我们建立了$K$- $\mathcal{B}(H)$的算子框架的摄动和稳定性的一些新性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integral K-operator frames for B(H)
In this paper, we will introduce a new notion, that of $K$-Integral operator frames in the set of all bounded linear operators noted $\mathcal{B}(H)$, where $H$ is a separable Hilbert space. Also, we prove some results of integral $K$-operator frame. Lastly we will establish some new properties for the perturbation and stability for an integral $K$-operator frames for $\mathcal{B}(H)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
10.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信