使用机器学习技术的语音性别识别

IF 0.3
Sweta Jain, Neha Pandey, Vaidehi Choudhari, Pratik Yawalkar, Amey Admane
{"title":"使用机器学习技术的语音性别识别","authors":"Sweta Jain, Neha Pandey, Vaidehi Choudhari, Pratik Yawalkar, Amey Admane","doi":"10.47164/ijngc.v14i1.1031","DOIUrl":null,"url":null,"abstract":"Gender Recognition using voice is of enormous prominence in the near future technology as its uses could range from smart assistance robots to customer service sector and many more. Machine learning (ML) models play a vital role in achieving this task. Using the acoustic properties of voice, different ML models classify the gender as male and female. In this research we have used the ML models- Random Forest, Decision Tree, Logistic Regression, Support Vector Machine (SVM), Gradient Boosting, K-Nearest Neighbor (KNN), and ensemble method (KNN, logistic regression, SVM). To propose which algorithm is best for recognizing gender, we have evaluated the models based on results achieved from analysis of accuracy, recall, F1 score, and precision.","PeriodicalId":42021,"journal":{"name":"International Journal of Next-Generation Computing","volume":"74 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gender Recognition by Voice using Machine Learning Techniques\",\"authors\":\"Sweta Jain, Neha Pandey, Vaidehi Choudhari, Pratik Yawalkar, Amey Admane\",\"doi\":\"10.47164/ijngc.v14i1.1031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gender Recognition using voice is of enormous prominence in the near future technology as its uses could range from smart assistance robots to customer service sector and many more. Machine learning (ML) models play a vital role in achieving this task. Using the acoustic properties of voice, different ML models classify the gender as male and female. In this research we have used the ML models- Random Forest, Decision Tree, Logistic Regression, Support Vector Machine (SVM), Gradient Boosting, K-Nearest Neighbor (KNN), and ensemble method (KNN, logistic regression, SVM). To propose which algorithm is best for recognizing gender, we have evaluated the models based on results achieved from analysis of accuracy, recall, F1 score, and precision.\",\"PeriodicalId\":42021,\"journal\":{\"name\":\"International Journal of Next-Generation Computing\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Next-Generation Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47164/ijngc.v14i1.1031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Next-Generation Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47164/ijngc.v14i1.1031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在不久的将来,使用语音进行性别识别将是一项非常重要的技术,因为它的用途可以从智能辅助机器人到客户服务部门等等。机器学习(ML)模型在实现这一任务中起着至关重要的作用。利用声音的声学特性,不同的ML模型将性别划分为男性和女性。在这项研究中,我们使用了ML模型-随机森林,决策树,逻辑回归,支持向量机(SVM),梯度增强,k -最近邻(KNN)和集成方法(KNN,逻辑回归,SVM)。为了提出最适合识别性别的算法,我们根据准确度、召回率、F1分数和精度分析得出的结果对模型进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gender Recognition by Voice using Machine Learning Techniques
Gender Recognition using voice is of enormous prominence in the near future technology as its uses could range from smart assistance robots to customer service sector and many more. Machine learning (ML) models play a vital role in achieving this task. Using the acoustic properties of voice, different ML models classify the gender as male and female. In this research we have used the ML models- Random Forest, Decision Tree, Logistic Regression, Support Vector Machine (SVM), Gradient Boosting, K-Nearest Neighbor (KNN), and ensemble method (KNN, logistic regression, SVM). To propose which algorithm is best for recognizing gender, we have evaluated the models based on results achieved from analysis of accuracy, recall, F1 score, and precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Next-Generation Computing
International Journal of Next-Generation Computing COMPUTER SCIENCE, THEORY & METHODS-
自引率
66.70%
发文量
60
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信