概率加权检索的截断模型

Jiaul H. Paik, Yash Agrawal, Sahil Rishi, Vaishal Shah
{"title":"概率加权检索的截断模型","authors":"Jiaul H. Paik, Yash Agrawal, Sahil Rishi, Vaishal Shah","doi":"10.1145/3476837","DOIUrl":null,"url":null,"abstract":"Existing probabilistic retrieval models do not restrict the domain of the random variables that they deal with. In this article, we show that the upper bound of the normalized term frequency (tf) from the relevant documents is much smaller than the upper bound of the normalized tf from the whole collection. As a result, the existing models suffer from two major problems: (i) the domain mismatch causes data modeling error, (ii) since the outliers have very large magnitude and the retrieval models follow tf hypothesis, the combination of these two factors tends to overestimate the relevance score. In an attempt to address these problems, we propose novel weighted probabilistic models based on truncated distributions. We evaluate our models on a set of large document collections. Significant performance improvement over six existing probabilistic models is demonstrated.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"21 1","pages":"1 - 24"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Truncated Models for Probabilistic Weighted Retrieval\",\"authors\":\"Jiaul H. Paik, Yash Agrawal, Sahil Rishi, Vaishal Shah\",\"doi\":\"10.1145/3476837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing probabilistic retrieval models do not restrict the domain of the random variables that they deal with. In this article, we show that the upper bound of the normalized term frequency (tf) from the relevant documents is much smaller than the upper bound of the normalized tf from the whole collection. As a result, the existing models suffer from two major problems: (i) the domain mismatch causes data modeling error, (ii) since the outliers have very large magnitude and the retrieval models follow tf hypothesis, the combination of these two factors tends to overestimate the relevance score. In an attempt to address these problems, we propose novel weighted probabilistic models based on truncated distributions. We evaluate our models on a set of large document collections. Significant performance improvement over six existing probabilistic models is demonstrated.\",\"PeriodicalId\":6934,\"journal\":{\"name\":\"ACM Transactions on Information Systems (TOIS)\",\"volume\":\"21 1\",\"pages\":\"1 - 24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems (TOIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3476837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems (TOIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

现有的概率检索模型没有对所处理的随机变量的域进行限制。在本文中,我们证明了相关文档的归一化项频率(tf)的上界远小于整个集合的归一化项频率(tf)的上界。因此,现有的模型存在两个主要问题:(1)领域不匹配导致数据建模误差;(2)由于异常值的幅度很大,检索模型遵循tf假设,这两个因素的结合往往会高估相关性评分。为了解决这些问题,我们提出了一种基于截断分布的加权概率模型。我们在一组大型文档集合上评估我们的模型。与现有的六种概率模型相比,证明了显著的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Truncated Models for Probabilistic Weighted Retrieval
Existing probabilistic retrieval models do not restrict the domain of the random variables that they deal with. In this article, we show that the upper bound of the normalized term frequency (tf) from the relevant documents is much smaller than the upper bound of the normalized tf from the whole collection. As a result, the existing models suffer from two major problems: (i) the domain mismatch causes data modeling error, (ii) since the outliers have very large magnitude and the retrieval models follow tf hypothesis, the combination of these two factors tends to overestimate the relevance score. In an attempt to address these problems, we propose novel weighted probabilistic models based on truncated distributions. We evaluate our models on a set of large document collections. Significant performance improvement over six existing probabilistic models is demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信