DNA拓扑结构决定了DNA-微管复合材料的强度和絮凝性

K. Peddireddy, D. Michieletto, Gina Aguirre, Jonathan Garamella, Pawan Khanal, R. Robertson-Anderson
{"title":"DNA拓扑结构决定了DNA-微管复合材料的强度和絮凝性","authors":"K. Peddireddy, D. Michieletto, Gina Aguirre, Jonathan Garamella, Pawan Khanal, R. Robertson-Anderson","doi":"10.21203/RS.3.RS-498534/V1","DOIUrl":null,"url":null,"abstract":"\n Polymer composites are ubiquitous in biology and industry alike, owing to their emergent desirable mechanical properties not attainable in single-species systems. At the same time, polymer topology has been shown to play a key role in tuning the rheology of polymeric fluids. However, how topology impacts the rheology of composites remains poorly understood. Here, we create composites of rigid rods (microtubules) polymerized within entangled solutions of flexible linear and ring polymers (DNA). We couple linear and nonlinear optical tweezers microrheology with confocal microscopy and scaled particle theory to show that composites of linear DNA and microtubules exhibit a strongly non-monotonic dependence of elasticity and stiffness on microtubule concentration due to depletion-driven polymerization and flocculation of microtubules. In contrast, composites of ring DNA and microtubules show a much more modest monotonic increase in elastic strength with microtubule concentration, which we demonstrate arises from the increased ability of rings to mix with microtubules.","PeriodicalId":8472,"journal":{"name":"arXiv: Soft Condensed Matter","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA topology dictates strength and flocculation in DNA-microtubule composites\",\"authors\":\"K. Peddireddy, D. Michieletto, Gina Aguirre, Jonathan Garamella, Pawan Khanal, R. Robertson-Anderson\",\"doi\":\"10.21203/RS.3.RS-498534/V1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Polymer composites are ubiquitous in biology and industry alike, owing to their emergent desirable mechanical properties not attainable in single-species systems. At the same time, polymer topology has been shown to play a key role in tuning the rheology of polymeric fluids. However, how topology impacts the rheology of composites remains poorly understood. Here, we create composites of rigid rods (microtubules) polymerized within entangled solutions of flexible linear and ring polymers (DNA). We couple linear and nonlinear optical tweezers microrheology with confocal microscopy and scaled particle theory to show that composites of linear DNA and microtubules exhibit a strongly non-monotonic dependence of elasticity and stiffness on microtubule concentration due to depletion-driven polymerization and flocculation of microtubules. In contrast, composites of ring DNA and microtubules show a much more modest monotonic increase in elastic strength with microtubule concentration, which we demonstrate arises from the increased ability of rings to mix with microtubules.\",\"PeriodicalId\":8472,\"journal\":{\"name\":\"arXiv: Soft Condensed Matter\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Soft Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/RS.3.RS-498534/V1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Soft Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/RS.3.RS-498534/V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚合物复合材料在生物和工业领域都是普遍存在的,因为它们具有在单一物种系统中无法实现的理想机械性能。同时,聚合物的拓扑结构在聚合物流体的流变性调节中起着关键作用。然而,拓扑结构如何影响复合材料的流变性仍然知之甚少。在这里,我们创造了刚性棒(微管)在柔性线性和环状聚合物(DNA)的纠缠溶液中聚合的复合材料。我们将线性和非线性光学镊子微流变学与共聚焦显微镜和尺度粒子理论相结合,表明线性DNA和微管的复合材料由于微管的耗尽驱动聚合和絮凝而表现出强烈的非单调依赖于微管浓度的弹性和刚度。相比之下,环DNA和微管的复合材料显示出更适度的弹性强度随微管浓度的单调增加,我们证明这是由于环与微管混合的能力增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DNA topology dictates strength and flocculation in DNA-microtubule composites
Polymer composites are ubiquitous in biology and industry alike, owing to their emergent desirable mechanical properties not attainable in single-species systems. At the same time, polymer topology has been shown to play a key role in tuning the rheology of polymeric fluids. However, how topology impacts the rheology of composites remains poorly understood. Here, we create composites of rigid rods (microtubules) polymerized within entangled solutions of flexible linear and ring polymers (DNA). We couple linear and nonlinear optical tweezers microrheology with confocal microscopy and scaled particle theory to show that composites of linear DNA and microtubules exhibit a strongly non-monotonic dependence of elasticity and stiffness on microtubule concentration due to depletion-driven polymerization and flocculation of microtubules. In contrast, composites of ring DNA and microtubules show a much more modest monotonic increase in elastic strength with microtubule concentration, which we demonstrate arises from the increased ability of rings to mix with microtubules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信