一类基于参数约简和约束约简的线性系统快速平滑轨迹规划

IF 1.6 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Guangyu Liu, Shangliang Wu, Ling Zhu, Jiajun Wang, Q. Lv
{"title":"一类基于参数约简和约束约简的线性系统快速平滑轨迹规划","authors":"Guangyu Liu, Shangliang Wu, Ling Zhu, Jiajun Wang, Q. Lv","doi":"10.34768/amcs-2022-0002","DOIUrl":null,"url":null,"abstract":"Abstract Fast and smooth trajectory planning is crucial for modern control systems, e.g., missiles, aircraft, robots and AGVs. However, classical spline based trajectory planning tools introduce redundant constraints and parameters, leading to high costs of computation and complicating fast and smooth execution of trajectory planning tasks. A new tool is proposed that employs truncated power functions to annihilate some constraints and reduce the number of parameters in the optimal model. It enables solving a simplified optimal problem in a shorter time while keeping the trajectory sufficiently smooth. With an engineering background, our case studies show that the proposed method has advantages over other solutions. It is promising in regard to the demanding tasks of trajectory planning.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"44 1","pages":"11 - 21"},"PeriodicalIF":1.6000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast and Smooth Trajectory Planning for a Class of Linear Systems Based on Parameter and Constraint Reduction\",\"authors\":\"Guangyu Liu, Shangliang Wu, Ling Zhu, Jiajun Wang, Q. Lv\",\"doi\":\"10.34768/amcs-2022-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Fast and smooth trajectory planning is crucial for modern control systems, e.g., missiles, aircraft, robots and AGVs. However, classical spline based trajectory planning tools introduce redundant constraints and parameters, leading to high costs of computation and complicating fast and smooth execution of trajectory planning tasks. A new tool is proposed that employs truncated power functions to annihilate some constraints and reduce the number of parameters in the optimal model. It enables solving a simplified optimal problem in a shorter time while keeping the trajectory sufficiently smooth. With an engineering background, our case studies show that the proposed method has advantages over other solutions. It is promising in regard to the demanding tasks of trajectory planning.\",\"PeriodicalId\":50339,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Science\",\"volume\":\"44 1\",\"pages\":\"11 - 21\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.34768/amcs-2022-0002\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2022-0002","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

快速、平稳的轨迹规划对于导弹、飞机、机器人和agv等现代控制系统至关重要。然而,传统的基于样条的轨迹规划工具引入了冗余的约束和参数,导致计算成本高,使轨迹规划任务的快速、顺利执行变得复杂。提出了一种利用截断幂函数消去约束条件,减少最优模型参数数量的新方法。它可以在较短的时间内解决简化的最优问题,同时保持轨迹足够平滑。在工程背景下,我们的案例研究表明,所提出的方法比其他解决方案具有优势。对于要求苛刻的轨迹规划任务,它是有前景的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and Smooth Trajectory Planning for a Class of Linear Systems Based on Parameter and Constraint Reduction
Abstract Fast and smooth trajectory planning is crucial for modern control systems, e.g., missiles, aircraft, robots and AGVs. However, classical spline based trajectory planning tools introduce redundant constraints and parameters, leading to high costs of computation and complicating fast and smooth execution of trajectory planning tasks. A new tool is proposed that employs truncated power functions to annihilate some constraints and reduce the number of parameters in the optimal model. It enables solving a simplified optimal problem in a shorter time while keeping the trajectory sufficiently smooth. With an engineering background, our case studies show that the proposed method has advantages over other solutions. It is promising in regard to the demanding tasks of trajectory planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
21.10%
发文量
0
审稿时长
4.2 months
期刊介绍: The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences. The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas: -modern control theory and practice- artificial intelligence methods and their applications- applied mathematics and mathematical optimisation techniques- mathematical methods in engineering, computer science, and biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信